Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 25(36): 8513-8521, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31012517

RESUMEN

Insulin analogues, mainstays in the modern treatment of diabetes mellitus, exemplify the utility of protein engineering in molecular pharmacology. Whereas chemical syntheses of the individual A and B chains were accomplished in the early 1960s, their combination to form native insulin remains inefficient because of competing disulfide pairing and aggregation. To overcome these limitations, we envisioned an alternative approach: pairwise substitution of cysteine residues with selenocysteine (Sec, U). To this end, CysA6 and CysA11 (which form the internal intrachain A6-A11 disulfide bridge) were each replaced with Sec. The A chain[C6U, C11U] variant was prepared by solid-phase peptide synthesis; while sulfitolysis of biosynthetic human insulin provided wild-type B chain-di-S-sulfonate. The presence of selenium atoms at these sites markedly enhanced the rate and fidelity of chain combination, thus solving a long-standing challenge in chemical insulin synthesis. The affinity of the Se-insulin analogue for the lectin-purified insulin receptor was indistinguishable from that of WT-insulin. Remarkably, the thermodynamic stability of the analogue at 25 °C, as inferred from guanidine denaturation studies, was augmented (ΔΔGu ≈0.8 kcal mol-1 ). In accordance with such enhanced stability, reductive unfolding of the Se-insulin analogue and resistance to enzymatic cleavage by Glu-C protease occurred four times more slowly than that of WT-insulin. 2D-NMR and X-ray crystallographic studies demonstrated a native-like three-dimensional structure in which the diselenide bridge was accommodated in the hydrophobic core without steric clash.


Asunto(s)
Disulfuros/química , Insulina/química , Selenio/química , Cristalografía por Rayos X , Cisteína/química , Humanos , Insulina/genética , Insulina/metabolismo , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Selenocisteína/química , Termodinámica
2.
Anticancer Drugs ; 23(3): 255-71, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22217921

RESUMEN

The ever-increasing emergence of the resistance of mammalian tumor cells to chemotherapy and its severe side effects reduces the clinical efficacy of a large variety of anticancer agents that are currently in use. Thus, despite the significant progress in cancer therapeutics in the last decades, the need to discover and to develop new, alternative, or synergistic anticancer agents remains. Cancer prevention or chemotherapy based on bioactive fractions or pure components derived from desert plants with known cancer-inhibiting properties suggests promising alternatives to current cancer therapy. Plants growing on low nutrient soils and/or under harsh climatic conditions, such as extreme temperatures, intense solar radiation, and water scarcity, are particularly susceptible to attack from reactive oxygen species and have evolved efficient antioxidation defense systems. The many examples of desert plants displaying anticancer effects as presented here indicates that the same defensive secondary metabolites protecting them against the harsh environment may also play a protective or a curative role against cancer, as they also do against diabetes, neurodegenerative, and other acute and chronic diseases. The present review highlights a plethora of studies focused on the antineoplastic properties of desert plants and their prinicipal phytochemicals, such as saponins, flavonoids, tannins, and terpenes. Although many desert plants have been investigated for their antitumor properties, there are many that still remain to be explored - a challenge for the prospective cancer therapy of the future.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Animales , Antineoplásicos Fitogénicos/química , Clima Desértico , Humanos , Fenoles/química , Fenoles/farmacología , Saponinas/química , Saponinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA