Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 46(10): 3597-603, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16186339

RESUMEN

PURPOSE: Corneal endothelial cells in humans do not replicate to any meaningful extent. Diminishing density of the cell monolayer with age and in the disease states is a major cause of loss of corneal transparency. This study was conducted to test the hypothesis that overexpression of the transcription factor E2F2 results in replication in nonproliferating human corneal endothelial cells. METHODS: Whole human corneas were incubated for 2 hours in a solution of recombinant E1(-)/E3(-) adenovirus incorporating cDNA encoding E2F2 and green fluorescent protein (GFP) under control of a bidirectional promoter and subsequently maintained in ex vivo culture. Control specimens were incubated with an identical virus bearing the GFP sequence only, or virus-free medium. Efficiency of gene transfer and localization was examined by fluorescence microscopy. En face confocal microscopy of the corneal endothelial surface was used to image recombinant E2F2 expression. 5-bromodeoxyuridine (BrdU) incorporation was used to examine progression to the S phase. Changes in density of the corneal endothelium were quantified by specular microscopy and counting of trypan-blue-stained cells. Apoptosis was tested with a TUNEL assay. RESULTS: Recombinant proteins were expressed predominantly in the endothelium and in a high proportion of endothelial cells in the first week after exposure to virus, diminishing thereafter. Compared with the control, transduction with E2F2 resulted in progression from the G(1) to the S phase in a significant number of cells and in increased cell density. Apoptosis was not found to any significant extent. CONCLUSIONS: Overexpression of the transcription factor E2F2 in nonmitotic human corneal endothelial cells results in short-term expression, cell-cycle progression, and increased monolayer cell density.


Asunto(s)
División Celular/fisiología , Replicación del ADN/fisiología , ADN Complementario/genética , Factor de Transcripción E2F2/genética , Endotelio Corneal/citología , Transfección , Adenovirus Humanos/genética , Apoptosis , Recuento de Células , Células Cultivadas , Factor de Transcripción E2F2/metabolismo , Endotelio Corneal/metabolismo , Expresión Génica , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Etiquetado Corte-Fin in Situ , Microscopía Confocal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA