Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Rep ; 23(10-11): 683-91, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15365763

RESUMEN

Solanum acaule Bitt., a wild potato species, is closely related to cultivated potato (Solanum. tuberosum L.). Incorporation of desirable traits from allotetraploid [2n=4x=48, 2 endosperm balance number (EBN)] S. acaule (acl) into autotetraploid (2n=4x=48, 4EBN) S. tuberosum (tbr) is difficult due to incongruity boundaries. In this study, three hybrid combinations, each with a specific genome constitution, were produced through protoplast fusion: (1) hexaploid 2x acl (+) 4x tbr, (2) tetraploid 2x acl (+) 2x tbr, and (3) hexaploid 4x acl (+) 2x tbr hybrids. In terms of glycoalkaloid aglycones, the hybrids produced demissidine, tomatidine and solanidine, similarly to the S. acaule parental species, but S. tuberosum synthesised only solanidine. Inoculations with Clavibacter michiganensis ssp. sepedonicus (Cms), which is the causal agent of bacterial ring rot in potato, yielded significantly lower total glycoalkaloid aglycone accumulation both in S. acaule plants and in interspecific hybrids in comparison with the corresponding mock-inoculated plants. However, in S. tuberosum the aglycone levels were either higher or unchanged as a result of infection by Cms. To incorporate the desirable traits of the interspecific somatic hybrids into 4EBN S. tuberosum, sexual backcrosses were carried out. The hexaploid 4x acl (+) 2x tbr hybrids with the hypothetical 4EBN showed the greatest capacity to undergo backcrosses with S. tuberosum.


Asunto(s)
Actinomycetales/fisiología , Enfermedades de las Plantas/microbiología , Alcaloides Solanáceos/metabolismo , Solanum tuberosum/microbiología , Solanum/microbiología , Hibridación Genética , Regeneración , Solanum/metabolismo , Solanum/fisiología , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Técnicas de Cultivo de Tejidos
2.
Genome ; 45(2): 442-9, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11962641

RESUMEN

GISH (genomic in situ hybridization) was applied for the analysis of mitotic chromosome constitutions of somatic hybrids and their derivatives between dihaploid clones of cultivated potato (Solanum tuberosum L.) (2n = 2x = 24, AA genome) and the diploid, non-tuberous, wild species Solanum brevidens Phil. (2n = 2x = 24, EE genome). Of the primary somatic hybrids, both tetraploid (2n = 4x) and hexaploid (2n = 6x) plants were found with the genomic constitutions of AAEE and AAEEEE, respectively. Androgenic haploids (somatohaploids) derived from the tetraploid somatic hybrids had the genomic constitutions of AE (2n = 2x = 24) and haploids originating from the hexaploid hybrids were triploid AEE (2n = 3x = 33 and 2n = 3x = 36). As a result of subsequent somatic hybridization from a fusion between dihaploid S. tuberosum (2n = 2x = 24, genome AA) and a triploid somatohaploid (2n = 3x = 33, genome AEE), second-generation somatic hybrids were obtained. These somatic hybrids were pentaploids (2n = 5x, genome AAAEE), but had variable chromosome numbers. GISH analysis revealed that both primary and second-generation somatic hybrids had lost more chromosomes of S. brevidens than of S. tuberosum.


Asunto(s)
Cromosomas , Hibridación in Situ/métodos , Mitosis , Solanum tuberosum/genética , Técnicas de Cultivo , Diploidia , Genoma de Planta , Haploidia , Hibridación Genética , Poliploidía , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA