Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Curr Biol ; 31(12): 2576-2591.e12, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33974848

RESUMEN

Across Europe, the genetics of the Chalcolithic/Bronze Age transition is increasingly characterized in terms of an influx of Steppe-related ancestry. The effect of this major shift on the genetic structure of populations in the Italian Peninsula remains underexplored. Here, genome-wide shotgun data for 22 individuals from commingled cave and single burials in Northeastern and Central Italy dated between 3200 and 1500 BCE provide the first genomic characterization of Bronze Age individuals (n = 8; 0.001-1.2× coverage) from the central Italian Peninsula, filling a gap in the literature between 1950 and 1500 BCE. Our study confirms a diversity of ancestry components during the Chalcolithic and the arrival of Steppe-related ancestry in the central Italian Peninsula as early as 1600 BCE, with this ancestry component increasing through time. We detect close patrilineal kinship in the burial patterns of Chalcolithic commingled cave burials and a shift away from this in the Bronze Age (2200-900 BCE) along with lowered runs of homozygosity, which may reflect larger changes in population structure. Finally, we find no evidence that the arrival of Steppe-related ancestry in Central Italy directly led to changes in frequency of 115 phenotypes present in the dataset, rather that the post-Roman Imperial period had a stronger influence, particularly on the frequency of variants associated with protection against Hansen's disease (leprosy). Our study provides a closer look at local dynamics of demography and phenotypic shifts as they occurred as part of a broader phenomenon of widespread admixture during the Chalcolithic/Bronze Age transition.


Asunto(s)
ADN Antiguo , Genoma Humano/genética , Migración Humana/historia , Conjuntos de Datos como Asunto , Genética de Población , Genómica , Historia Antigua , Humanos , Italia , Lepra/genética , Fenotipo
2.
Proc Biol Sci ; 285(1883)2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-30051838

RESUMEN

Archaeological dental calculus has emerged as a rich source of ancient biomolecules, including proteins. Previous analyses of proteins extracted from ancient dental calculus revealed the presence of the dietary milk protein ß-lactoglobulin, providing direct evidence of dairy consumption in the archaeological record. However, the potential for calculus to preserve other food-related proteins has not yet been systematically explored. Here we analyse shotgun metaproteomic data from 100 archaeological dental calculus samples ranging from the Iron Age to the post-medieval period (eighth century BC to nineteenth century AD) in England, as well as 14 dental calculus samples from contemporary dental patients and recently deceased individuals, to characterize the range and extent of dietary proteins preserved in dental calculus. In addition to milk proteins, we detect proteomic evidence of foodstuffs such as cereals and plant products, as well as the digestive enzyme salivary amylase. We discuss the importance of optimized protein extraction methods, data analysis approaches and authentication strategies in the identification of dietary proteins from archaeological dental calculus. This study demonstrates that proteomic approaches can robustly identify foodstuffs in the archaeological record that are typically under-represented due to their poor macroscopic preservation.


Asunto(s)
Cálculos Dentales/química , Dieta/historia , Proteoma , Arqueología , ADN Antiguo/análisis , Inglaterra , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia Antigua , Historia Medieval
3.
Philos Trans R Soc Lond B Biol Sci ; 370(1660): 20130616, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25487340

RESUMEN

Current evidence suggests that pigs were first domesticated in Eastern Anatolia during the ninth millennium cal BC before dispersing into Europe with Early Neolithic farmers from the beginning of the seventh millennium. Recent ancient DNA (aDNA) research also indicates the incorporation of European wild boar into domestic stock during the Neolithization process. In order to establish the timing of the arrival of domestic pigs into Europe, and to test hypotheses regarding the role European wild boar played in the domestication process, we combined a geometric morphometric analysis (allowing us to combine tooth size and shape) of 449 Romanian ancient teeth with aDNA analysis. Our results firstly substantiate claims that the first domestic pigs in Romania possessed the same mtDNA signatures found in Neolithic pigs in west and central Anatolia. Second, we identified a significant proportion of individuals with large molars whose tooth shape matched that of archaeological (likely) domestic pigs. These large 'domestic shape' specimens were present from the outset of the Romanian Neolithic (6100-5500 cal BC) through to later prehistory, suggesting a long history of admixture between introduced domestic pigs and local wild boar. Finally, we confirmed a turnover in mitochondrial lineages found in domestic pigs, possibly coincident with human migration into Anatolia and the Levant that occurred in later prehistory.


Asunto(s)
Evolución Biológica , ADN/genética , Fósiles , Hibridación Genética , Paleontología/métodos , Sus scrofa/anatomía & histología , Sus scrofa/genética , Animales , Pesos y Medidas Corporales , ADN/historia , Historia Antigua , Humanos , Rumanía , Diente/anatomía & histología , Diente/química
4.
Proc Natl Acad Sci U S A ; 111(17): 6184-9, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24753608

RESUMEN

Modern domestic plants and animals are subject to human-driven selection for desired phenotypic traits and behavior. Large-scale genetic studies of modern domestic populations and their wild relatives have revealed not only the genetic mechanisms underlying specific phenotypic traits, but also allowed for the identification of candidate domestication genes. Our understanding of the importance of these genes during the initial stages of the domestication process traditionally rests on the assumption that robust inferences about the past can be made on the basis of modern genetic datasets. A growing body of evidence from ancient DNA studies, however, has revealed that ancient and even historic populations often bear little resemblance to their modern counterparts. Here, we test the temporal context of selection on specific genetic loci known to differentiate modern domestic chickens from their extant wild ancestors. We extracted DNA from 80 ancient chickens excavated from 12 European archaeological sites, dated from ∼ 280 B.C. to the 18th century A.D. We targeted three unlinked genetic loci: the mitochondrial control region, a gene associated with yellow skin color (ß-carotene dioxygenase 2), and a putative domestication gene thought to be linked to photoperiod and reproduction (thyroid-stimulating hormone receptor, TSHR). Our results reveal significant variability in both nuclear genes, suggesting that the commonality of yellow skin in Western breeds and the near fixation of TSHR in all modern chickens took place only in the past 500 y. In addition, mitochondrial variation has increased as a result of recent admixture with exotic breeds. We conclude by emphasizing the perils of inferring the past from modern genetic data alone.


Asunto(s)
Animales Domésticos/genética , Pollos/genética , ADN/genética , ADN/historia , Animales , ADN Mitocondrial/genética , Europa (Continente) , Geografía , Haplotipos/genética , Historia Antigua , Humanos , Datos de Secuencia Molecular , Reproducibilidad de los Resultados
5.
Proc Natl Acad Sci U S A ; 104(39): 15276-81, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17855556

RESUMEN

The Neolithic Revolution began 11,000 years ago in the Near East and preceded a westward migration into Europe of distinctive cultural groups and their agricultural economies, including domesticated animals and plants. Despite decades of research, no consensus has emerged about the extent of admixture between the indigenous and exotic populations or the degree to which the appearance of specific components of the "Neolithic cultural package" in Europe reflects truly independent development. Here, through the use of mitochondrial DNA from 323 modern and 221 ancient pig specimens sampled across western Eurasia, we demonstrate that domestic pigs of Near Eastern ancestry were definitely introduced into Europe during the Neolithic (potentially along two separate routes), reaching the Paris Basin by at least the early 4th millennium B.C. Local European wild boar were also domesticated by this time, possibly as a direct consequence of the introduction of Near Eastern domestic pigs. Once domesticated, European pigs rapidly replaced the introduced domestic pigs of Near Eastern origin throughout Europe. Domestic pigs formed a key component of the Neolithic Revolution, and this detailed genetic record of their origins reveals a complex set of interactions and processes during the spread of early farmers into Europe.


Asunto(s)
ADN Mitocondrial/genética , Agricultura , Animales , Asia , Biometría , Europa (Continente) , Geografía , Historia Antigua , Cadenas de Markov , Datos de Secuencia Molecular , Método de Montecarlo , Análisis de Regresión , Análisis de Secuencia de ADN , Sus scrofa , Porcinos
6.
Proc Biol Sci ; 274(1616): 1377-85, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17412685

RESUMEN

The extinct aurochs (Bos primigenius primigenius) was a large type of cattle that ranged over almost the whole Eurasian continent. The aurochs is the wild progenitor of modern cattle, but it is unclear whether European aurochs contributed to this process. To provide new insights into the demographic history of aurochs and domestic cattle, we have generated high-confidence mitochondrial DNA sequences from 59 archaeological skeletal finds, which were attributed to wild European cattle populations based on their chronological date and/or morphology. All pre-Neolithic aurochs belonged to the previously designated P haplogroup, indicating that this represents the Late Glacial Central European signature. We also report one new and highly divergent haplotype in a Neolithic aurochs sample from Germany, which points to greater variability during the Pleistocene. Furthermore, the Neolithic and Bronze Age samples that were classified with confidence as European aurochs using morphological criteria all carry P haplotype mitochondrial DNA, suggesting continuity of Late Glacial and Early Holocene aurochs populations in Europe. Bayesian analysis indicates that recent population growth gives a significantly better fit to our data than a constant-sized population, an observation consistent with a postglacial expansion scenario, possibly from a single European refugial population. Previous work has shown that most ancient and modern European domestic cattle carry haplotypes previously designated T. This, in combination with our new finding of a T haplotype in a very Early Neolithic site in Syria, lends persuasive support to a scenario whereby gracile Near Eastern domestic populations, carrying predominantly T haplotypes, replaced P haplotype-carrying robust autochthonous aurochs populations in Europe, from the Early Neolithic onward. During the period of coexistence, it appears that domestic cattle were kept separate from wild aurochs and introgression was extremely rare.


Asunto(s)
Bovinos/genética , ADN Mitocondrial/genética , Animales , Animales Domésticos , Europa (Continente) , Haplotipos , Historia Antigua , Medio Oriente , Datos de Secuencia Molecular
7.
Proc Natl Acad Sci U S A ; 104(12): 4834-9, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17360400

RESUMEN

Human settlement of Oceania marked the culmination of a global colonization process that began when humans first left Africa at least 90,000 years ago. The precise origins and dispersal routes of the Austronesian peoples and the associated Lapita culture remain contentious, and numerous disparate models of dispersal (based primarily on linguistic, genetic, and archeological data) have been proposed. Here, through the use of mtDNA from 781 modern and ancient Sus specimens, we provide evidence for an early human-mediated translocation of the Sulawesi warty pig (Sus celebensis) to Flores and Timor and two later separate human-mediated dispersals of domestic pig (Sus scrofa) through Island Southeast Asia into Oceania. Of the later dispersal routes, one is unequivocally associated with the Neolithic (Lapita) and later Polynesian migrations and links modern and archeological Javan, Sumatran, Wallacean, and Oceanic pigs with mainland Southeast Asian S. scrofa. Archeological and genetic evidence shows these pigs were certainly introduced to islands east of the Wallace Line, including New Guinea, and that so-called "wild" pigs within this region are most likely feral descendants of domestic pigs introduced by early agriculturalists. The other later pig dispersal links mainland East Asian pigs to western Micronesia, Taiwan, and the Philippines. These results provide important data with which to test current models for human dispersal in the region.


Asunto(s)
ADN Mitocondrial/genética , Geografía , Filogenia , Porcinos/genética , Migración Animal , Animales , Asia Sudoriental , Teorema de Bayes , Haplotipos , Historia Antigua , Datos de Secuencia Molecular , Oceanía , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA