Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foods ; 11(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35564003

RESUMEN

The aim of this study was to determine the quantity of particular toxic metals (Pb, Cd, As, Hg) and micronutrients (Cr, Fe, Co, Ni, Cu, Zn, Se) in the recommended daily dose of 51 food supplements based on beehive products. Samples taken from the Croatian market were submitted for the identification/quantification of studied metals and micronutrients. It was carried out by means of inductively coupled plasma mass spectrometry (ICP-MS). Eleven samples (21.57%) showed an increased concentration of total arsenic, three samples (5.88%) contained an increased concentration of total iron, and eight samples (15.68%) had an increased concentration of total nickel. Three samples (5.88%) contained an increased concentration of zinc, while one sample (1.96%) contained an increased concentration of selenium. Increased levels of certain toxic metals and micronutrients do not pose a danger to human health because the amount identified was less than what can cause toxic effects in humans. All other analysed metals and micronutrients fell within the defined literature values. Despite certain increases in particular parameters, all samples met the established toxicity criteria. This study evidenced their safety if consumed in the recommended daily dose.

2.
Acta Clin Croat ; 58(4): 672-692, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32595253

RESUMEN

Ginkgo biloba L. is the eldest plant growing on the Earth; preparations made of its leaves and seeds represent an integral part of the Chinese medicine for over a millennium. The plant species was first discovered by Linnaeus in 1771, its name thereby originating from the Latin words bis (two) and lobus (lobe), which duly illustrate the specific shape of its leaf. Contemporary Ginkgo biloba L. plant based pharmaceuticals mostly comprise extracts recovered from leaves harvested during fall, when the concentration of active components reaches its peak. Recent investigations have managed to establish the chemical composition of the plant leaf, together with the mechanisms underlying its beneficial effects on rheological profile of the blood and acceleration of its flow. High price of these preparations and their vast popularity have soon become an incentive for counterfeiting Ginkgo biloba L. extracts and the release of bogus drugs comprising cheaper extracts coming from other plants. Namely, modern Ginkgo biloba L.-based medicinal products and food supplements comprise extracts recovered from the plant leaf that get to be standardized according to its key pharmacological active components, most often flavone glycosides (represented in the share of 22%-27%) and terpene trilactones (represented in the share of 6%-7%). The flavonoids that predominate such preparations and are most relevant from the pharmacological standpoint are quercetin, kaempferol and isorhamnetin, their total amount and mutual ratios, thereby being an unquestionable indicator of the extract authenticity. Therefore, most of the analyses aiming at verifying the authenticity of a given Ginkgo biloba L.-based product boil down to the analysis of these parameters. Counterfeiting involves partial or full replacement of the Ginkgo biloba L. extract (GBE) with a cheaper plant extract of a similar composition, the latter occasionally being enriched with an additional amount of flavonoids, most often quercetin, not originating from the Ginkgo biloba L. plant. The aim of this study was to verify the authenticity and quality of Ginkgo biloba L.-based products circulating on the Croatian market. To that effect, 10 samples of products produced by various manufacturers were analyzed in a certified laboratory. The parameters based on which the authenticity of the preparations was assessed were the shares of aglycones of typical ginkgo flavone glycosides, that is to say, quercetin, kaempferol and isorhamnetin, and mutual ratios of the established quantities of quercetin to kaempferol as the key clues to unmasking Ginkgo extracts counterfeiting. The amount of ginkgo flavone glycosides was established using high performance liquid chromatography. The analysis proved 80% of the samples analyzed to be conformant to the label statements as regards the total amount of flavone glycosides and their mutual ratios. In 20% of the samples, the ratio of quercetin to kaempferol deviated from normal values; on top of that, the presence of the phytoestrogen genistein, one of the components typically comprised by the Sophora japonica L. plant, was also proven, documenting counterfeiting of the GBE and its replacement by the Sophora japonica L. extracts in the samples under consideration. Due to the untrue label statements descriptive of these products, the information on the presence of pharmacologically active genistein was neglected to be mentioned despite its unfavorable health impact that can be expected in some consumer groups. The results of this study indicated the frequency of counterfeiting the Ginkgo biloba L.-based products found on the Croatian market to be deemed substantial. Therefore, a more rigorous and more thorough control of these products and sanctioning of irresponsible manufacturers and distributers is proposed, so as to contribute to a higher market representation of high-quality products, as well as to avoid health risks and downsize the rate of their counterfeiting.


Asunto(s)
Medicamentos Falsificados/química , Quempferoles/análisis , Lactonas/análisis , Extractos Vegetales/química , Quercetina/análogos & derivados , Quercetina/análisis , Croacia , Ginkgo biloba/química , Humanos , Hojas de la Planta/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-28480413

RESUMEN

BACKGROUND: Citrinin is a mycotoxin produced by several species of the genera Aspergillus, Penicillium and Monascus and it occurs mainly in stored grain. Citrinin is generally formed after harvest and occurs mainly in stored grains, it also occurs in other plant products. Often, the co-occurrence with other mycotoxins is observed, especially ochratoxin A, which is usually associated with endemic nephropathy. At the European Union level, systematic monitoring of Citrinin in grains began with the aim of determining its highest permissible amount in food. Thus, far the systematic monitoring of the above mentioned mycotoxin in Croatia is yet to begin. MATERIALS AND METHODS: The main goal of this study was to determine the presence of Citrinin in grains sampled in the area of Medimurje, Osijek-Baranja, Vukovar-Srijem and Brod-Posavina County. For the purpose of identification and quantification of citrinin, high performance liquid chromatograph (HPLC) with fluorescence was used (Calibration curve k > 0.999; Intra assay CV = 2.1%; Inter assay CV = 4.3%; LOQ < 1 µg/kg). RESULTS: From the area of Medimurje County, 10 samples of corn and 10 samples of wheat were analyzed. None of the samples contained Citrinin (<1 µg/kg). From the area of Osijek-Baranja and Vukovar-Srijem County, 15 samples from each County were analyzed. The mean value for the samples of Osijek-Baranja County was 19.63 µg/kg (median=15.8 µg/kg), while for Vukovar-Srijem County the mean value of citrinin was 14,6 µg/kg (median=1.23 µg/kg). From 5 analyzed samples from Brod-Posavina County, one of the samples contained citrinin in the amount of 23.8 µg/kg, while the registered amounts in the other samples were <1 µg/kg. CONCLUSION: The results show that grains from several Counties contain certain amounts of Citrinin possibly indicating a significant intake of citrinin in humans. It must be stated that grains and grain-based products are the basis of everyday diet of all age groups, especially small children, where higher intake of citrinin can occur. Consequently, we emphasize the need for systematic analysis of larger amount of samples, from both large grains and small grains, especially in the area of Brod-Posavina County, in order to obtain more realistic notion of citrinin contamination of grains and to asses the health risk in humans.


Asunto(s)
Citrinina/análisis , Grano Comestible/química , Triticum/química , Zea mays/química , Cromatografía Líquida de Alta Presión , Citrinina/efectos adversos , Croacia , Humanos
4.
Artículo en Inglés | MEDLINE | ID: mdl-28480414

RESUMEN

BACKGROUND: Vegetarian diets are rich in vegetables. Green leafy vegetables are foods that contain considerable amounts of nitrate, which can have both positive and negative effects on the human body. Their potential carcinogenicity and toxicity have been proven, particularly after the reduction of nitrate to nitrite itself or just serving as a reactant with amines and/or amides in the formation of N-nitroso compounds -N-nitrosamines and other nitrogen compounds which may have high levels of nitrate. The aim of this study was to determine whether there is a significant difference, considering the location and seasonal sampling period, in the level of nitrate in certain types of green vegetables, all in order to be able to assess their intake, and possible impact on human health, especially knowing that exposure to nitrate can be potentially higher for vegetarian population group. MATERIALS AND METHODS: For this purpose, the sampling of 200 different leafy green vegetables was conducted, all of which could be found in free sale in the Republic of Croatia. The sampling was conducted during two seasonal periods - the spring and autumn period. In the springtime, lettuce (sem), spinach (pinacho), kale (kale), chard (mangel) and cabbage (brassica) were sampled, and in autumn lettuce, spinach, kale, chard and arugula. Samples were analyzed using high performance liquid chromatography (HPLC) with UV detection. RESULTS: The results from the spring sampling phase were in the range of 603 mg/kg for cabbage - 972 mg/kg for chard, and for autumn phase of 1.024 mg/kg for chard to 4.354 mg/kg for the arugula. The results showed that there were significant differences (p <0.05) for most of the samples analyzed, considering the sampling locations and time period. CONCLUSION: The results indicate that the analyzed vegetables contain significant amounts of nitrate in their composition, which represents relatively significant, but still acceptable intake into the human body.


Asunto(s)
Nitratos/análisis , Verduras/química , Beta vulgaris/química , Brassica/química , Cromatografía Líquida de Alta Presión , Croacia , Ingestión de Alimentos , Humanos , Lactuca/química , Estaciones del Año , Spinacia oleracea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA