Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCO Clin Cancer Inform ; 7: e2200139, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36780606

RESUMEN

PURPOSE: Imaging reports in oncology provide critical information about the disease evolution that should be timely shared to tailor the clinical decision making and care coordination of patients with advanced cancer. However, tumor response stays unstructured in free-text and underexploited. Natural language processing (NLP) methods can help provide this critical information into the electronic health records (EHR) in real time to assist health care workers. METHODS: A rule-based algorithm was developed using SAS tools to automatically extract and categorize tumor response within progression or no progression categories. 2,970 magnetic resonance imaging, computed tomography scan, and positron emission tomography French reports were extracted from the EHR of a large comprehensive cancer center to build a 2,637-document training set and a 603-document validation set. The model was also tested on 189 imaging reports from 46 different radiology centers. A tumor dashboard was created in the EHR using the Timeline tool of the vis.js javascript library. RESULTS: An NLP methodology was applied to create an ontology of radiographic terms defining tumor response, mapping text to five main concepts, and application decision rules on the basis of clinical practice RECIST guidelines. The model achieved an overall accuracy of 0.88 (ranging from 0.87 to 0.94), with similar performance on both progression and no progression classification. The overall accuracy was 0.82 on reports from different radiology centers. Data were visualized and organized in a dynamic tumor response timeline. This tool was deployed successfully at our institution both retrospectively and prospectively as part of an automatic pipeline to screen reports and classify tumor response in real time for all metastatic patients. CONCLUSION: Our approach provides an NLP-based framework to structure and classify tumor response from the EHR and integrate tumor response classification into the clinical oncology workflow.


Asunto(s)
Neoplasias , Radiología , Humanos , Estudios Retrospectivos , Procesamiento de Lenguaje Natural , Flujo de Trabajo , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Oncología Médica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA