Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 447: 130771, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36696772

RESUMEN

It has been speculated that selenium (Se) supply can affect cadmium (Cd) 'availability' and increase the Cd tolerance of plants used for phytoextraction, in a pH-dependent process. Thus, we evaluated the interaction Cd-Se and the effects of soil pH in this interaction on plant availability of Cd and phytoextraction efficiency of Urochloa decumbens cv. Basilisk grown in Oxisol. Two soil concentrations of Cd (0.93 and 3.6 mg kg-1) and Se (<0.2 and 1 mg kg-1) and two soil pH (0.01 mol L-1 CaCl2) conditions (4.1 and 5.7) were considered. At both pH, Se supply increased the exchangeable fraction of Cd and decreased the residual Cd fraction. At pH 4.1, the growth of U. decumbens was impaired by Se addition, regardless of Cd exposure. The lower root growth and tillering of U. decumbens exposed to Cd disappeared at pH 5.7 due to uptake of low Se concentrations. Thus, the toxic or beneficial effects of Se on growth of U. decumbens used for Cd phytoextraction depend on the amount of Se assimilated. The Cd phytoextraction efficiency of U. decumbens was not improved by Se supply, regardless of soil pH. Therefore, we cannot recommend the application of Se to increase Cd phytoextraction by this grass.


Asunto(s)
Selenio , Contaminantes del Suelo , Suelo , Cadmio/análisis , Poaceae , Concentración de Iones de Hidrógeno , Contaminantes del Suelo/análisis , Biodegradación Ambiental
2.
Plants (Basel) ; 11(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890481

RESUMEN

This study was designed to investigate the effects of Azospirillum brasilense and Bradyrhizobium sp. co-inoculation coupled with N application on soil N levels and N in plants (total N, nitrate N-NO3- and ammonium N-NH4+), photosynthetic pigments, cowpea plant biomass and grain yield. An isotopic technique was employed to evaluate 15N fertilizer recovery and derivation. Field trials involved two inoculations-(i) single Bradyrhizobium sp. and (ii) Bradyrhizobium sp. + A. brasilense co-inoculation-and four N fertilizer rates (0, 20, 40 and 80 kg ha-1). The co-inoculation of Bradyrhizobium sp. + A. brasilense increased cowpea N uptake (an increase from 10 to 14%) and grain yield (an average increase of 8%) compared to the standard inoculation with Bradyrhizobium sp. specifically derived from soil and other sources without affecting 15N fertilizer recovery. There is no need for the supplementation of N via mineral fertilizers when A. brasilense co-inoculation is performed in a cowpea crop. However, even in the case of an NPK basal fertilization, applied N rates should remain below 20 kg N ha-1 when co-inoculation with Bradyrhizobium sp. and A. brasilense is performed.

3.
Ecotoxicol Environ Saf ; 207: 111216, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916525

RESUMEN

Low concentrations of selenium (Se) are beneficial for plant growth. Foliar Se application at high concentrations is toxic to plants due to the formation of reactive oxygen species (ROS). This study characterized Se toxicity symptoms using X-ray fluorescence (XRF) technique in response to foliar Se application in cowpea plants. Five Se concentrations (0, 10, 25, 50, 100 e 150 g ha-1) were sprayed on leaves as sodium selenate. The visual symptoms of Se toxicity in cowpea leaves were separated into two stages: I) necrotic points with an irregular distribution and internerval chlorosis at the leaf limb border (50-100 g ha-1); II) total chlorosis with the formation of dark brown necrotic lesions (150 g ha-1). Foliar Se application at 50 g ha-1 increased photosynthetic pigments and yield. Ultrastructural analyses showed that Se foliar application above 50 g ha-1 disarranged the upper epidermis of cowpea leaves. Furthermore, Se application above 100 g ha-1 significantly increased the hydrogen peroxide concentration and lipid peroxidation inducing necrotic leaf lesions. Mapping of the elements in leaves using the XRF revealed high Se intensity, specifically in leaf necrotic lesions accompanied by calcium (Ca) as a possible attenuating mechanism of plant stress. The distribution of Se intensities in the seeds was homogeneous, without specific accumulation sites. Phosphorus (P) and sulfur (S) were found primarily located in the embryonic region. Understanding the factors involved in Se accumulation and its interaction with Ca support new preventive measurement technologies to prevent Se toxicity in plants.


Asunto(s)
Selenio/metabolismo , Vigna/metabolismo , Peroxidación de Lípido , Fósforo/análisis , Fotosíntesis , Hojas de la Planta/química , Semillas/química , Ácido Selénico/análisis , Selenio/análisis , Azufre/análisis
4.
Ecotoxicol Environ Saf ; 203: 111016, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888590

RESUMEN

Selenium (Se) is considered a beneficial element to higher plants based on its regulation of antioxidative system under abiotic or biotic stresses. However, the limit of beneficial and toxic physiological effects of Se is very narrow. In the present study, the antioxidant performance, nutritional composition, long-distance transport of Se, photosynthetic pigments, and growth of Coffea arabica genotypes in response to Se concentration in solution were evaluated. Five Coffea arabica genotypes (Obatã, IPR99, IAC125, IPR100 and Catucaí) were used, which were grown in the absence and presence of Se (0 and 1.0 mmol L-1) in nutrient solution. The application of 1 mmol L-1 Se promoted root browning in all genotypes. There were no visual symptoms of leaf toxicity, but there was a reduction in the concentration of phosphorus and sulfur in the shoots of plants exposed to high Se concentration. Except for genotype Obatã, the coffee seedlings presented strategies for regulating Se uptake by reducing long-distance transport of Se from roots to shoots. The concentrations of total chlorophyll, total pheophytin, and carotenoids were negatively affected in genotypes Obatã, IPR99, and IAC125 upon exposure to Se at 1 mmol L-1. H2O2 production was reduced in genotypes IPR99, IPR100, and IAC125 upon exposure to Se, resulting in lower activity of superoxide dismutase (SOD), and catalase (CAT). These results suggest that antioxidant metabolism was effective in regulating oxidative stress in plants treated with Se. The increase in sucrose, and decrease in SOD, CAT and ascorbate peroxidase (APX) activities, as well as Se compartmentalization in the roots, were the main biochemical and physiological modulatory effects of coffee seedlings under stress conditions due to excess of Se.


Asunto(s)
Antioxidantes/metabolismo , Coffea/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Coffea/genética , Coffea/metabolismo , Coffea/fisiología , Genotipo , Oxidación-Reducción , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Plantones/fisiología , Selenio/análisis , Selenio/metabolismo , Especificidad de la Especie
5.
Ecotoxicol Environ Saf ; 202: 110916, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800251

RESUMEN

Selenium (Se) at low concentration is considered benefit element to plants. The range between optimal and toxic concentration of Se is narrow and varies among plant species. This study aimed to evaluate the phenotypic, physiological and biochemical responses of four rice genotypes (BRS Esmeralda, BRSMG Relâmpago, BRS Bonança and Bico Ganga) grown hydroponically treated with sodium selenate (1.5 mM L-1). Selenium treated plants showed a dramatically decrease of soluble proteins, chlorophylls, and carotenoids concentration, resulting in the visual symptoms of toxicity characterized as leaf chlorosis and necrosis. Selenium toxicity caused a decrease on shoot and root dry weight of rice plants. Excess Se increased the oxidative stress monitored by the levels of hydrogen peroxide and lipid peroxidation. The enzymatic antioxidant system (catalase, superoxide dismutase, and ascorbate peroxidase) increased in response to Se supply. Interestingly, primary metabolism compounds such as sucrose, total sugars, nitrate, ammonia and amino acids increased in Se-treated plants. The increase in these metabolites may indicate a defense mechanism for the osmotic readjustment of rice plants to mitigate the toxicity caused by Se. However, these metabolites were not effective to minimize the damages on phenotypic traits such as leaf chlorosis and reduced shoot and root dry weight in response to excess Se. Increased sugars profile combined with antioxidant enzymes activities can be an effective biomarkers to indicate stress induced by Se in rice plants. This study shows the physiological attributes that must be taken into account for success in the sustainable cultivation of rice in environments containing excess Se.


Asunto(s)
Oryza/fisiología , Selenio/toxicidad , Contaminantes del Suelo/toxicidad , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Hidroponía , Peroxidación de Lípido , Oryza/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/metabolismo , Ácido Selénico/metabolismo , Superóxido Dismutasa/metabolismo
6.
Ecotoxicol Environ Saf ; 190: 110147, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918255

RESUMEN

Selenium (Se) is an essential element for human and animal, although considered beneficial to higher plants. Selenium application at high concentration to plants can cause toxicity decreasing the physiological quality of seeds. This study aimed to characterize the Se toxicity on upland rice yield, seed physiology and the localization of Se in seeds using X-ray fluorescence microanalysis (µ-XRF). In the flowering stage, foliar application of Se (0, 250, 500, 1000, 1500, 2000 g ha-1) as sodium selenate was performed. A decrease in rice yield and an increase in seed Se concentrations were observed from 250 g Se ha-1. The storage proteins in the seeds showed different responses with Se application (decrease in albumin, increase in prolamin and glutelin). There was a reduction in the concentrations of total sugars and sucrose with the application of 250 and 500 g Se ha-1. The highest intensities Kα counts of Se were detected mainly in the endosperm and aleurone/pericarp. µ-XRF revealed the spatial distribution of sulfur, calcium, and potassium in the seed embryos. The seed germination decreased, and the electrical conductivity increased in response to high Se application rates showing clearly an abrupt decrease of physiological quality of rice seeds. This study provides information for a better understanding of the effects of Se toxicity on rice, revealing that in addition to the negative effects on yield, there are changes in the physiological and biochemical quality of seeds.


Asunto(s)
Oryza/fisiología , Selenio/toxicidad , Contaminantes del Suelo/toxicidad , Animales , Endospermo , Glútenes , Humanos , Nutrientes , Oryza/metabolismo , Proteínas de Plantas , Semillas/efectos de los fármacos , Semillas/fisiología , Ácido Selénico/análisis , Azufre/metabolismo
7.
Ecotoxicol Environ Saf ; 186: 109747, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31634660

RESUMEN

Cadmium (Cd) contamination has generated an environmental problem worldwide, leading to harmful effects on human health and damages to plant metabolism. Selenium (Se) is non essential for plants, however it can improve plant growth and reduce the adverse effects of abiotic stress. In addition, ethylene may interplay the positive effects of Se in plants. In order to investigate the role of ethylene in Se-modulation of antioxidant defence system in response to Cd-stress, we tested the hormonal mutant Epinastic (epi) with a subset of constitutive activation of the ethylene response and Micro-Tom (MT) plants. For this purpose, Se mineral uptake, Cd and Se concentrations, pigments, malondialdeyde (MDA) and hydrogen peroxide (H2O2) contents, ethylene production, glutathione (GSH) compound, and superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) activities were analysed in MT and epi plants submitted to 0.5 mM CdCl2 and 1 µM of selenate or selenite. MT plants treated with both Se forms increased growth in the presence or not of 0.5 mM CdCl2, but not change epi growth. Both Se forms reduced Cd uptake in MT plants and cause reverse effect in epi plants. P, Mg, S, K and Zn uptake increased in epi plants with Se application, irrespective to Cd exposure. Chlorophylls and carotenoids contents decreased in both genotypes under Cd exposure, in contrast to what was observed in epi leaves in the presence of Se. When antioxidant enzymes activities were concerned, Se application increased Mn-SOD, Fe-SOD and APX activities. In the presence of Cd, MT and epi plants exhibited decreased SOD activity and increased CAT, APX and GR activities. MT and epi plants with Se supply exhibited increased APX and GR activities in the presence of Cd. Overall, these results suggest that ethylene may be involved in Se induced-defence responses, that triggers a positive response of the antioxidant system and improve growth under Cd stress. These results showed integrative roles of ethylene and Se in regulating the cell responses to stressful-conditions and, the cross-tolerance to stress could be used to manipulate ethylene regulated gene expression to induce heavy metal tolerance.


Asunto(s)
Antioxidantes/metabolismo , Cadmio/efectos adversos , Etilenos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Solanum lycopersicum/efectos de los fármacos , Adaptación Fisiológica , Ascorbato Peroxidasas/metabolismo , Cadmio/metabolismo , Catalasa/metabolismo , Exposición a Riesgos Ambientales , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Solanum lycopersicum/metabolismo , Mutación , Oxidación-Reducción , Hojas de la Planta/metabolismo , Ácido Selénico/farmacología , Ácido Selenioso/farmacología , Selenio/metabolismo , Superóxido Dismutasa/metabolismo
8.
Physiol Plant ; 166(4): 996-1007, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30515843

RESUMEN

The fragmentary information on phosphorus (P) × zinc (Zn) interactions in plants warrants further study, particularly in plants known for their high P and Zn requirements, such as cotton (Gossypium hirsutum L.). The objective of this study was to investigate the effect of P × Zn interactions in a modern cultivar of cotton grown hydroponically. Biomass, mineral nutrition and photosynthetic parameters were monitored in plants receiving contrasting combinations of P and Zn supply. Root biomass, length and surface area were similar in plants with low P and/or low Zn supply to those in plants grown with high P and high Zn supply, reflecting an increased root/shoot biomass quotient when plants lack sufficient P or Zn for growth. Increasing P supply and reducing Zn supply increased shoot P concentrations, whilst shoot Zn concentrations were influenced largely by Zn supply. A balanced P × Zn supply (4 mM P × 4 µM Zn) enabled greatest biomass accumulation, while an imbalanced supply of these nutrients led to Zn deficiency, P toxicity or Zn toxicity. Net photosynthetic rate, stomatal conductance, transpiration rate and instantaneous carboxylation efficiency increased as P or Zn supply increased. Although increasing P supply reduced the P-use efficiency in photosynthesis (PUEP) and increasing Zn supply reduced the Zn-use efficiency in photosynthesis (ZnUEP), increasing Zn supply at a given P supply increased PUEP and increasing P supply at a given Zn supply increased ZnUEP. These results suggest that agricultural management strategies should seek for balanced mineral nutrition to optimize yields and resource-use efficiencies.


Asunto(s)
Gossypium/metabolismo , Fósforo/metabolismo , Zinc/metabolismo , Biomasa , Gossypium/fisiología , Fotosíntesis/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología
9.
Plant Physiol Biochem ; 115: 249-258, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28399490

RESUMEN

The description of physiological disorders in physic nut plants deficient in nitrogen (N), phosphorus (P) and potassium (K) may help to predict nutritional imbalances before the appearance of visual symptoms and to guide strategies for early nutrient supply. The aim of this study was to evaluate the growth of physic nuts (Jatropha curcas L.) during initial development by analyzing the gas exchange parameters, nutrient uptake and use efficiency, as well as the nitrate reductase and acid phosphatase activities and polyamine content. Plants were grown in a complete nutrient solution and solutions from which N, P or K was omitted. The nitrate reductase activity, phosphatase acid activity, polyamine content and gas exchange parameters from leaves of N, P and K-deficient plants indicates earlier imbalances before the appearance of visual symptoms. Nutrient deficiencies resulted in reduced plant growth, although P- and K-deficient plants retained normal net photosynthesis (A), stomatal conductance (gs) and instantaneous carboxylation efficiency (k) during the first evaluation periods, as modulated by the P and K use efficiencies. Increased phosphatase acid activity in P-deficient plants may also contribute to the P use efficiency and to A and gs during the first evaluations. Early physiological and biochemical evaluations of N-, P- and K-starved plants may rely on reliable, useful methods to predict early nutritional imbalances.


Asunto(s)
Jatropha/enzimología , Jatropha/metabolismo , Nitrato-Reductasa/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Potasio/metabolismo , Jatropha/genética , Nitrato-Reductasa/genética , Nitrógeno/deficiencia , Fósforo/deficiencia , Poliaminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA