Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37624934

RESUMEN

Weaning is a critical period for pigs. Some plant extracts showing antioxidant, anti-inflammatory or antibacterial properties, provided to piglets and/or their dam, may improve piglets' robustness at weaning, thus reducing the need for antobiotics. This study investigated the effects of a maternal and/or a direct supplementation of piglets with a combination of plant extracts on sow and piglet performance and their metabolic, immune, inflammatory, and oxidative status during lactation and around weaning. Sixty-four sows were assigned to the control or treated group. Treated sows were supplemented with a powdered plant extracts supplement daily top-dressed on feed from day of gestation (DG) 106 to day of lactation (DL) 28 and a liquid solution top-dressed on feed on DG109. Within each sow group, litters were divided into two groups: a control piglet group and a treated piglet group. A single dose of a liquid solution was orally given to piglets in the treated piglet group. Piglets were weaned on DL28. Blood samples were collected from sows on DG94, DG112, and DL26 and from 2 piglets per litter on DL3, DL14, DL25, and 5 d postweaning to analyze indicators of metabolic, immune, inflammatory, and oxidative status. Colostrum and milk samples were collected at farrowing, DL6, and 26. Maternal supplementation had no effect on sow metabolic, immune, inflammatory, and oxidative status except for fewer lymphocytes on DG112 (P < 0.05) and a lower plasma concentration of non-esterified fatty acids on DL26 (P < 0.05). Maternal supplementation tended to decrease dry matter and gross energy (P < 0.10) and reduced fat and haptoglobin concentrations (P < 0.01) in milk on DL26. Maternal supplementation had no effect on piglets' growth performance and blood indicators during lactation and around weaning. On DL25, the direct supplementation of piglets decreased their neutrophils proportion (P < 0.05), increased the expression of genes encoding pro- and anti-inflammatory cytokines in whole blood culture in response to lipopolysaccharide (P < 0.05) and tended to decrease the oxidative stress index (P = 0.06). After weaning, these beneficial effects were no longer observed but the supplementation improved piglets' growth performance during the postweaning period (P < 0.05). Plant extract supplementation could thus modify the composition of mammary secretions and improve postweaning performance of piglets potentially related to the modification of their immune and oxidative status before weaning.


Weaning is a critical period for piglets. Some plant extracts, known to exhibit antioxidant, anti-inflammatory, or antibacterial properties, may improve piglets' robustness at weaning. This study investigated the effects of a maternal and/or a direct supplementation of piglets with a combination of plant extracts on sow and piglet metabolic, immune, inflammatory, and oxidative status during lactation and around weaning. The maternal supplementation corresponded to a powdered supplement top-dressed on sow diet during late gestation and lactation and a liquid solution administered once 1 wk before parturition. The piglet supplementation was a liquid solution administered once on day 3 of age. The most concentrated components of the powder were extracts of fenugreek, Siberian ginseng, and cat's claw. The liquid solutions contained mostly oregano and eucalyptus essential oils. The maternal supplementation had few effects on sow immune, inflammatory, and oxidative status but modified milk composition at the end of lactation. It did not improve growth performance and the immune, inflammatory, and oxidative blood parameters of piglets around weaning. The direct supplementation of piglets modified their immune and oxidative status before weaning and increased their growth performance during the postweaning period, showing the potential of plant extracts as part of preventive strategies dedicated to improve piglets' robustness during the suckling and postweaning periods.


Asunto(s)
Líquidos Corporales , Lactancia , Animales , Femenino , Porcinos , Destete , Leche , Suplementos Dietéticos
2.
BMC Vet Res ; 19(1): 25, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717823

RESUMEN

BACKGROUND: Dietary supplementation with a blend of functional amino acids (AA) and grape extract polyphenols contributes to preserve intestinal health and growth performance of piglets during the post-weaning period. In the present experiment, we assessed if a supplementation with a mix of AA and grape extract polyphenols during the post-weaning period would persist to improve the pig capacity to cope with a subsequent challenge caused by poor hygiene of housing conditions. Eighty pigs weaned at 28 days of age were fed a standard diet supplemented (AAP) or not (CNT) with 0.2% of a blend of AA (glutamine, arginine, cystine, valine, isoleucine, and leucine) and grape extract polyphenols during the post-weaning period (from week 0 to 6). At week 6, pigs were transferred to a growing unit where 50% of pigs previously fed AAP and CNT diets were housed in good and the other 50% in poor hygiene conditions for 3 weeks (from week 7 to 9; challenge period). All pigs were fed a standard growing diet that was not supplemented with AAP. We measured pig growth performance, plasma indicators of inflammation, digestive integrity, and oxidative status, and scored fecal consistency. Differences were considered significant at P ≤ 0.05. RESULTS: One week post-weaning, pigs fed AAP had lower plasma concentrations of haptoglobin than CNT pigs (P = 0.03). Six weeks post-weaning, plasma concentrations of diamine oxidase (DAO) were lower (P = 0.03) whereas those of vitamin E and A were greater (P ≤ 0.05) in pigs fed AAP compared to CNT pigs. The prevalence of diarrhea was higher in CNT pigs compared to AAP pigs (P < 0.01). During the challenge period, only pigs previously fed CNT diet had lower growth rate in poor than good conditions (P ≤ 0.05). They had also greater plasma concentrations of haptoglobin and oxidative stress index (OSI) and lower plasma concentrations of vitamin E in poor than good hygiene conditions (P ≤ 0.05). CONCLUSIONS: Pigs fed AAP diet during post-weaning had less diarrhea and plasma concentrations of a digestive integrity marker, as well as greater plasma concentrations of antioxidant indicators during the post-weaning period. The beneficial effects of AAP supplementation persisted after the post-weaning period as evidenced by the absence of effects of the hygiene challenge on growth and health indicators in pigs previously fed APP. This clearly indicated a greater ability of pigs fed AAP to cope with the poor hygiene conditions.


Asunto(s)
Aminoácidos , Crianza de Animales Domésticos , Vitis , Animales , Alimentación Animal/análisis , Diarrea/prevención & control , Diarrea/veterinaria , Dieta/veterinaria , Suplementos Dietéticos , Haptoglobinas , Higiene , Porcinos , Vitamina E , Destete
3.
Front Vet Sci ; 8: 663727, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113671

RESUMEN

In pigs and broiler chickens, the gastrointestinal tract or gut is subjected to many challenges which alter performance, animal health, welfare and livability. Preventive strategies are needed to mitigate the impacts of these challenges on gut health while reducing the need to use antimicrobials. In the first part of the review, we propose a common definition of gut health for pig and chickens relying on four pillars, which correspond to the main functions of the digestive tract: (i) epithelial barrier and digestion, (ii) immune fitness, (iii) microbiota balance and (iv) oxidative stress homeostasis. For each pillar, we describe the most commonly associated indicators. In the second part of the review, we present the potential of functional amino acid supplementation to preserve and improve gut health in piglets and chickens. We highlight that amino acid supplementation strategies, based on their roles as precursors of energy and functional molecules, as signaling molecules and as microbiota modulators can positively contribute to gut health by supporting or restoring its four intertwined pillars. Additional work is still needed in order to determine the effective dose of supplementation and mode of administration that ensure the full benefits of amino acids. For this purpose, synergy between amino acids, effects of amino acid-derived metabolites and differences in the metabolic fate between free and protein-bound amino acids are research topics that need to be furtherly investigated.

4.
J Anim Sci ; 94(5): 1961-71, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27285694

RESUMEN

The present experiment aimed to determine if Trp metabolism and growth responses to dietary Trp are modulated by dietary niacin (B) in weanling piglets. Piglets weaned at 3 wk of age were distributed 1 wk later (7.6 kg of BW, SEM = 0.1) in 52 pens of 2 animals each. Pens were assigned to factorial dietary treatments with 2 additions of B, 15 mg/kg (LB3) vs. 45 mg/kg (HB3) and 2 additions of Trp, 0 mg/kg (-Trp) vs. 1 mg/kg (+Trp) for Trp to Lys ratios of 0.16 vs. 0.24, respectively. Growth performance was recorded every week from 4 to 10 wk of age. Fasting blood samples were taken at 4, 6, 8, and 10 wk of age. From 4 to 10 wk of age, ADFI tended to be greater ( = 0.10) in HB3 than in LB3 (1,031 vs. 1,003 g, SEM = 7), and this was reflected ( = 0.06) by ADG (642 vs. 623 g, SEM = 7). No treatment effect was observed on plasma Trp or kynurenine (Kyn), an intermediate metabolite of Trp catabolism. The response of plasma nicotinamide (Nam), a product of Trp catabolism and an indicator of B status, to dietary B differed according to treatments (interaction Trp × B, < 0.01) with values of 1.4, 3.3, 4.1, and 5.3 µM (SEM = 0.1) in LB3-Trp, HB3-Trp, LB3+Trp, and HB3+Trp, respectively. At 11 wk of age, postprandial blood samples were collected from 6 piglets per treatment for measurements of Trp and insulin metabolism. Postprandial plasma Trp (96.4 vs. 72.2 µ, SEM = 3.4) and Kyn (1.7 vs. 1.3 µ, SEM = 0.1) were greater ( < 0.01) in +Trp vs. -Trp. Postprandial plasma Nam was greater ( < 0.01) in +Trp vs. -Trp (3.4 vs. 1.9 µ, SEM = 0.3) and in HB3 vs. LB3 piglets (3.4 vs. 1.9 µ, SEM = 0.3). Postprandial peaks and areas under curves of C-peptide and glucose were not affected by treatments. However, for insulin, the postprandial peak was lower in +Trp vs. -Trp piglets in the LB3 group (interaction Trp × B, < 0.05); values were 1.3, 1.0, 0.7, and 1.0 n (SEM = 0.1) in LB3-Trp, HB3-Trp, LB3+Trp, and HB3+Trp, respectively. The peak value of the molar ratio insulin:C-peptide was lower ( < 0.02) in +Trp vs. -Trp piglets (0.56 vs. 0.73, SEM = 0.05). The responses observed on growth performance and plasma Nam suggest that the LB3 level was suboptimal. According also to plasma Nam, it appears that supplemental dietary B can attenuate Trp oxidation toward niacin metabolites. Postprandial profiles of insulin and C-peptide indicate that Trp action is exerted on insulin clearance rather than on insulin secretion in piglets, without apparent consequences on glucose utilization.


Asunto(s)
Suplementos Dietéticos , Insulina/metabolismo , Niacina/farmacología , Porcinos/fisiología , Triptófano/farmacología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Quinurenina/sangre , Masculino , Niacina/administración & dosificación , Periodo Posprandial , Triptófano/sangre , Triptófano/metabolismo , Vitaminas
5.
Proc Nutr Soc ; 71(3): 425-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22607969

RESUMEN

The objective of this review is to provide an overview of the implication of amino acids (AA) in important physiological functions. This is done in the context of pig production where the competition for AA utilisation is exacerbated by constraints to maximise productive responses and the necessity to reduce dietary protein input for environmental, economic and sanitary issues. Therefore, there is an opportunity to refine the nutritional recommendations by exploring the physiological roles of AA. For example, methionine and cysteine, either in selenised or sulfur forms, are directly involved in the regulation of the glutathione antioxidative system. In sows, glutathione antioxidative system may contribute to improving ovulation conditions through control of oxidative pressure. Supplementation of sow diets with l-arginine, a precursor of NO and polyamines, may stimulate placental growth, promoting conceptus survival, growth and tissue development. The beneficial effect of arginine supplementation has been also suggested to improve lactation performance. Feed intake is usually the first response that is impacted by an inadequate AA supply. Valine and tryptophan imbalances may act as signals for decreasing feed intake. AA are also important nutrients for maintaining the animal's defence systems. Threonine, one of the main constituents of mucin protein, is important for gut development during the postnatal period. It may exert a protective effect that reduces the impact of weaning on gut morphology and associated disturbances. Finally, tryptophan is involved in the regulation of the defence system through its action as a precursor of antioxidants and its effect on the inflammatory response.


Asunto(s)
Aminoácidos/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Proteínas en la Dieta/farmacología , Aminoácidos/uso terapéutico , Animales , Antioxidantes/metabolismo , Proteínas en la Dieta/uso terapéutico , Ingestión de Energía/efectos de los fármacos , Femenino , Desarrollo Fetal/efectos de los fármacos , Enfermedades Gastrointestinales/prevención & control , Enfermedades Gastrointestinales/veterinaria , Crecimiento/efectos de los fármacos , Inflamación/prevención & control , Inflamación/veterinaria , Porcinos
6.
Amino Acids ; 41(5): 1195-205, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20872026

RESUMEN

Tryptophan is an indispensable amino acid that should to be supplied by dietary protein. Apart from its incorporation into body proteins, tryptophan is the precursor for serotonin, an important neuromediator, and for kynurenine, an intermediary metabolite of a complex metabolic pathway ending with niacin, CO(2), and kynurenic and xanthurenic acids. Tryptophan metabolism within different tissues is associated with numerous physiological functions. The liver regulates tryptophan homeostasis through degrading tryptophan in excess. Tryptophan degradation into kynurenine by immune cells plays a crucial role in the regulation of immune response during infections, inflammations and pregnancy. Serotonin is synthesized from tryptophan in the gut and also in the brain, where tryptophan availability is known to influence the sensitivity to mood disorders. In the present review, we discuss the major functions of tryptophan and its role in the regulation of growth, mood, behavior and immune responses with regard to the low availability of this amino acid and the competition between tissues and metabolic pathways for tryptophan utilization.


Asunto(s)
Triptófano/metabolismo , Animales , Quimioterapia , Humanos , Infecciones/tratamiento farmacológico , Infecciones/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Quinurenina , Estado Nutricional , Triptófano/uso terapéutico
7.
Neonatology ; 97(4): 321-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19940515

RESUMEN

BACKGROUND: Although full-term infants suffering intrauterine growth restriction (IUGR) are routinely fed high-protein (HP) formulas to ensure catch-up growth, the effects of HP intake are poorly understood. An IUGR piglet model provides an opportunity to investigate these effects. METHODS AND RESULTS: Twelve IUGR piglets were artificially fed HP formulas (50% more protein in comparison to sow milk) from the 2nd day of life (d2) until d28. Unexpectedly, all HP piglets developed poor growth, severe hypotonia and polypnea between d10 and d16. One third died spontaneously. This syndrome was investigated to understand its pathophysiology and to adopt a strategy to restore health. Blood and urine biochemistry and amino acid concentrations were investigated in 10 HP piglets and 8 piglets that were fed a normal-protein (NP) formula. In comparison to NP piglets, HP piglets showed significant hypokalemia (2.7 +/- 0.6 vs. 3.6 +/- 0.6 mmol/l; p < 0.01), hypophosphatemia (1.5 +/- 0.2 vs. 3.0 +/- 0.3 mmol/l; p > 0.01), hypercalcemia (3.0 +/- 0.3 vs. 2.5 +/- 0.2 mmol/l; p < 0.01), hyperammonemia (365 +/- 4 vs. 242 +/- 15 micromol/l; p < 0.05), elevated blood urea (6.5 +/- 0.4 vs. 1.3 +/- 0.4 mmol/l; p < 0.01) and elevated taurine concentrations (50.2 +/- 8.5 vs. 17.7 +/- 2.7 micromol/l; p < 0.01). CONCLUSIONS: These altered parameters indicated inadequate potassium and phosphorus dietary supplies in HP piglets. When the HP formula was supplemented with monocalcium phosphate and monopotassium phosphate (HP-sup), serum biochemistry was normalized in piglets fed this formula (n = 8). This experimental strategy restored growth in IUGR piglets fed HP-sup, without a toxic effect. The current findings suggest that use of an HP formula without a proportional increase in its phosphorus and potassium content induces pathology similar to the refeeding syndrome in IUGR piglets.


Asunto(s)
Peso al Nacer/efectos de los fármacos , Proteínas en la Dieta/efectos adversos , Modelos Animales de Enfermedad , Retardo del Crecimiento Fetal/mortalidad , Retardo del Crecimiento Fetal/patología , Porcinos , Alimentación Animal , Animales , Animales Recién Nacidos , Glucemia/análisis , Dieta , Ingestión de Energía/fisiología , Femenino , Masculino , Leche/química , Leche/fisiología , Embarazo , Aumento de Peso/efectos de los fármacos , Aumento de Peso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA