Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Aquat Toxicol ; 254: 106356, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36423467

RESUMEN

The global sequencing of microRNA (miRNA; miR) and integration to downstream mRNA expression profiles in early life stages (ELS) of fish following exposure to crude oil determined consistently dysregulated miRNAs regardless of the oil source or fish species. The overlay of differentially expressed miRNAs and mRNAs into in silico software determined that the key roles of these miRNAs were predicted to be involved in cardiovascular, neurological and visually-mediated pathways. Of these, altered expression of miRNAs, miR-203a and miR-34b were predicted to be primary targets of crude oil. To better characterize the effect of these miRNAs to downstream transcript changes, zebrafish embryos were microinjected at 1 h post fertilization (hpf) with either a miR-203a inhibitor or miR-34b. Since both miRs have been shown to be associated with aryl hydrocarbon receptor (AhR) function, benzo(a)pyrene (BaP), a potent AhR agonist, was used as a potential positive control. Transcriptomic profiling was conducted on injected and exposed larvae at 7 and 72 hpf, and eye morphology assessed following exposure at 72 hpf. The top predicted physiological system disease and functions between differentially expressed genes (DEGs) shared with miR-203a inhibitor-injected and miR-34b-injected embryos were involved in brain formation, and the development of the central nervous system and neurons. When DEGs of miR-203a inhibitor-injected embryos were compared with BaP-exposed DEGs, alterations in nervous system development and function, and abnormal morphology of the neurosensory retina, eye and nervous tissue were predicted, consistent with both AhR and non-AhR pathways. When assessed morphologically, the eye area of miR-203a inhibitor and miR-34b-injected and BaP-exposed embryos were significantly reduced. These results suggest that miR-203a inhibition and miR-34b overexpression contribute to neurological, cardiovascular and eye toxicity responses that are caused by oil and PAH exposure in ELS fish, and are likely mediated through both AhR and non-AhR pathways.


Asunto(s)
MicroARNs , Petróleo , Contaminantes Químicos del Agua , Animales , Pez Cebra/metabolismo , Transcriptoma , Contaminantes Químicos del Agua/toxicidad , MicroARNs/genética , MicroARNs/metabolismo , Petróleo/metabolismo
2.
Mar Pollut Bull ; 179: 113684, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35489094

RESUMEN

Ultraviolet (UV) radiation can significantly increase the toxicity of polycyclic aromatic hydrocarbons (PAHs) in crude oil to early life stage (ELS) fishes through photo-induced /photo-enhanced toxicity. However, little is known about the sub-lethal effects and mechanisms of photo-induced PAH toxicity in ELS fishes. The present study investigated apoptosis and global transcriptomic effects in larval red drum (Sciaenops ocellatus) (24-72 h post-fertilization) following co-exposure to oil (0.29-0.30 µg/L ∑PAH50) and UV. Apoptosis was quantified using the TUNEL assay, and transcriptomic effects were assessed using RNA sequencing analysis. Apoptotic fluorescence was greatest in the eyes and skin following 24 and 48 h co-exposure to oil and UV, indicating photo-induced toxicity. Consistent with these phenotypic responses, pathways associated with phototransduction, eye development, and dermatological disease were among the top predicted pathways impacted. The present study is the first to provide global transcriptomic analysis of UV and oil co-exposure in an ELS fish.


Asunto(s)
Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Apoptosis , Peces , Larva , Perciformes/fisiología , Petróleo/análisis , Petróleo/toxicidad , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Transcriptoma , Contaminantes Químicos del Agua/análisis
3.
Environ Toxicol Chem ; 39(12): 2509-2515, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33006780

RESUMEN

In the aquatic environment, ubiquitous natural factors such as ultraviolet light (UV) and dissolved organic carbon (DOC) are likely to influence crude oil toxicity. The present study examined the interactive effects of DOC, UV, and DOC-UV co-exposure on the acute toxicity of Deepwater Horizon crude oil in larval red drum (Sciaenops ocellatus). Although DOC alone did not influence crude oil toxicity, it mildly reduced UV photo-enhanced toxicity. Environ Toxicol Chem 2020;39:2509-2515. © 2020 SETAC.


Asunto(s)
Carbono/farmacología , Compuestos Orgánicos/farmacología , Perciformes/fisiología , Contaminación por Petróleo/análisis , Pruebas de Toxicidad Aguda , Rayos Ultravioleta , Animales , Relación Dosis-Respuesta en la Radiación , Golfo de México , Larva/efectos de los fármacos , Larva/efectos de la radiación , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Agua/química , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA