Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
ScientificWorldJournal ; 2018: 6218430, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686587

RESUMEN

Sophorae Radix (Sophora flavescens Aiton) has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone) and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers) was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid) and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin) were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.


Asunto(s)
Genes de Plantas , Fenoles/metabolismo , Sophora/genética , Sophora/metabolismo , Vías Biosintéticas/genética , Cromatografía Líquida de Alta Presión , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Especificidad de Órganos/genética , Fenoles/química , Fitoquímicos/química , Extractos Vegetales , Sophora/química , Transcriptoma
2.
Plant Physiol Biochem ; 70: 445-54, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23835362

RESUMEN

The Orange (Or) gene is responsible for the accumulation of carotenoids in plants. We isolated the Or gene (IbOr) from storage roots of orange-fleshed sweetpotato (Ipomoea batatas L. Lam. cv. Sinhwangmi), and analyzed its function in transgenic sweetpotato calli. The IbOr gene has an open reading frame in the 942 bp cDNA, which encodes a 313-amino acid protein containing a cysteine-rich zinc finger domain. IbOr was strongly expressed in storage roots of orange-fleshed sweetpotato cultivars; it also was expressed in leaves, stems, and roots of cultivars with alternatively colored storage roots. IbOr transcription increased in response to abiotic stress, with gene expression reaching maximum at 2 h after treatment. Two different overexpression vectors of IbOr (IbOr-Wt and IbOr-Ins, which contained seven extra amino acids) were transformed into calli of white-fleshed sweetpotato [cv. Yulmi (Ym)] using Agrobacterium. The transgenic calli were easily selected because they developed a fine orange color. The expression levels of the IbOr transgene and genes involved in carotenoid biosynthesis in IbOr-Wt and IbOr-Ins transgenic calli were similar, and both transformants displayed higher expression levels than those in Ym calli. The contents of ß-carotene, lutein, and total carotenoids in IbOr-Ins transgenic lines were approximately 10, 6, and 14 times higher than those in Ym calli, respectively. The transgenic IbOr calli exhibited increased antioxidant activity and increased tolerance to salt stress. Our work shows that the IbOr gene may be useful for the biotechnological development of transgenic sweetpotato plants that accumulate increased carotenoid contents on marginal agricultural lands.


Asunto(s)
Expresión Génica , Genes de Plantas , Ipomoea batatas/genética , Luteína/genética , Tolerancia a la Sal/genética , beta Caroteno/genética , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Secuencia de Bases , Clonación Molecular , ADN Complementario , Genes de Plantas/genética , Ipomoea batatas/metabolismo , Luteína/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Cloruro de Sodio/metabolismo , Estrés Fisiológico/genética , Transgenes , beta Caroteno/metabolismo
3.
Curr Drug Targets ; 14(9): 999-1005, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23574281

RESUMEN

Carotenoids are considered to act as antioxidants and protect humans from serious disorders such as skin degeneration and ageing, cardiovascular disease, certain types of cancer, and age-related diseases of the eye. In this study, these chemopreventive activities of a carotenoids-overexpressing transgenic carrot were evaluated. The results of DPPH, hydroxyl, and superoxide radical scavenging tests demonstrate that the acetone extract obtained from the taproots of the carrot plants exhibits significant antioxidant activity. A higher activity was detected in the transgenic carrot extract compared with the wild-type extract. A chemopreventive activity test for degenerative diseases of the eye revealed that pretreatment with the carrot extract reduced cell death in a retinal ganglion cell line, RGC-5 cells exposed to 1-buthionine- (R,S)-sulfoximine and L-glutamic acid.


Asunto(s)
Antioxidantes/farmacología , Carotenoides/farmacología , Daucus carota/genética , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Acetona , Antioxidantes/química , Antioxidantes/metabolismo , Compuestos de Bifenilo , Butionina Sulfoximina/farmacología , Carotenoides/análisis , Muerte Celular , Línea Celular , Daucus carota/metabolismo , Ácido Glutámico/farmacología , Humanos , Radical Hidroxilo/metabolismo , Estrés Oxidativo , Picratos , Extractos Vegetales/química , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Células Ganglionares de la Retina/fisiología , Superóxidos/metabolismo
4.
Transgenic Res ; 21(2): 265-78, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21660481

RESUMEN

Harvestable, starch-storing organs of plants, such as fleshy taproots and tubers, are important agronomic products that are also suitable target organs for use in the molecular farming of recombinant proteins due to their strong sink strength. To exploit a promoter directing strong expression restricted to these storage organs, we isolated the promoter region (3.0 kb) of SRD1 from sweetpotato (Ipomoea batatas cv. 'White Star') and characterized its activity in transgenic Arabidopsis, carrot, and potato using the ß-glucuronidase (GUS) gene (uidA) as a reporter gene. The SRD1 promoter conferred root-specific expression in transgenic Arabidopsis, with SRD1 promoter activity increasing in response to exogenous IAA. A time-course study of the effect of IAA (50 µM) revealed a maximum increase in SRD1 promoter activity at 24 h post-treatment initiation. A serial 5' deletion analysis of the SRD1 promoter identified regions related to IAA-inducible expression as well as regions containing positive and negative elements, respectively, controlling the expression level. In transgenic carrot, the SRD1 promoter mediated strong taproot-specific expression, as evidenced by GUS staining being strong in almost the entire taproot, including secondary phloem, secondary xylem and vascular cambium. The activity of the SRD1 promoter gradually increased with increasing diameter of the taproot in the transgenic carrot and was 10.71-fold higher than that of the CaMV35S promoter. The SRD1 promoter also directed strong tuber-specific expression in transgenic potato. Taken together, these results demonstrate that the SRD1 promoter directs strong expression restricted to the underground storage organs, such as fleshy taproots and tubers, as well as fibrous root tissues.


Asunto(s)
Arabidopsis/metabolismo , Daucus carota/metabolismo , Ipomoea batatas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Solanum tuberosum/metabolismo , Regiones no Traducidas 5' , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Medios de Cultivo/metabolismo , Ciclopentanos/farmacología , ADN de Plantas/genética , ADN de Plantas/metabolismo , Daucus carota/genética , Daucus carota/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Glucuronidasa/genética , Glucuronidasa/metabolismo , Ácidos Indolacéticos/farmacología , Ipomoea batatas/metabolismo , Oxilipinas/farmacología , Floema/citología , Floema/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Coloración y Etiquetado , Factores de Tiempo , Sitio de Iniciación de la Transcripción , Transformación Genética , Xilema/citología , Xilema/metabolismo
5.
Biomol Ther (Seoul) ; 20(4): 425-30, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24009831

RESUMEN

Rumex acetosa is a perennial herb that is widely distributed across eastern Asia. Although the hot water extract of R. acetosa has been used to treat gastritis or gastric ulcers as a folk medicine, no scientific report exists for the use of this plant to treat gastric ulcers. Hence, the present study was undertaken to assess the anti-ulcer activity of water and 70% ethanol extracts obtained from R. acetosa, using an HCl/ethanol-induced gastric ulcer model in mice. Anti-inflammatory and free radical-scavenging activities of these two extracts were also evaluated and compared. As a result, the administration of R. acetosa extracts significantly reduced the occurrence of gastric ulcers. However, significant differences in protective activity against gastric ulcers were observed between the two samples. In the case of the group pretreated with an ethanol extract dosage of 100 mg/kg, the protective effect (90.9%) was higher than that of water extract (41.2%). Under histological evaluation, pretreatment with R. acetosa extracts reversed negative effects, such as inflammation, edema, moderate hemorrhaging and loss of epithelial cells, presented by HCl/ ethanol-treated stomachs. Meanwhile, R. acetosa extracts showed potent DPPH radical-scavenging activity and decreased NO production in a murine macrophage cell line, RAW 264.7, in a dose-dependent manner without affecting cellular viability. The greater anti-ulcer and NO production inhibitory activities exhibited by ethanol extracts compared to water extracts could be ascribed to the higher emodin levels, a major anthraquinone component of this plant.

6.
Phytochemistry ; 74: 69-78, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22154923

RESUMEN

Sweetpotato (Ipomoea batatas Lam.) is an important industrial crop and source of food that contains useful components, including antioxidants such as carotenoids. ß-Carotene hydroxylase (CHY-ß) is a key regulatory enzyme in the beta-beta-branch of carotenoid biosynthesis and it catalyzes hydroxylation into both ß-carotene to ß-cryptoxanthin and ß-cryptoxanthin to zeaxanthin. To increase the ß-carotene content of sweetpotato through the inhibition of further hydroxylation of ß-carotene, the effects of silencing CHY-ß in the carotenoid biosynthetic pathway were evaluated. A partial cDNA encoding CHY-ß was cloned from the storage roots of orange-fleshed sweetpotato (cv. Shinhwangmi) to generate an RNA interference-IbCHY-ß construct. This construct was introduced into cultured cells of white-fleshed sweetpotato (cv. Yulmi). Reverse transcription-polymerase chain reaction analysis confirmed the successful suppression of IbCHY-ß gene expression in transgenic cultured cells. The expression level of phytoene synthase and lycopene ß-cyclase increased, whereas the expression of other genes showed no detectable change. Down-regulation of IbCHY-ß gene expression changed the composition and levels of carotenoids between non-transgenic (NT) and transgenic cells. In transgenic line #7, the total carotenoid content reached a maximum of 117 µg/g dry weight, of which ß-carotene measured 34.43 µg/g dry weight. In addition, IbCHY-ß-silenced calli showed elevated ß-cryptoxanthin and zeaxanthin contents as well as high transcript level P450 gene. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) in transgenic cells was more than twice that in NT cells. RNA-IbCHY-ß calli increased abscisic acid (ABA) content, which was accompanied by enhanced tolerance to salt stress. In addition, the production of reactive oxygen species measured by 3,3'-diaminobenzidine (DAB) staining was significantly decreased in transgenic cultured cells under salt stress. Taken together, the present results indicate that down-regulation of IbCHY-ß increased ß-carotene contents and total carotenoids in transgenic plant cells and enhanced their antioxidant capacity.


Asunto(s)
Carotenoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ipomoea batatas/enzimología , Oxigenasas de Función Mixta/metabolismo , Tolerancia a la Sal/genética , beta Caroteno/metabolismo , Ácido Abscísico/metabolismo , Transferasas Alquil y Aril/metabolismo , Antioxidantes/metabolismo , Compuestos de Bifenilo/metabolismo , Células Cultivadas , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , ADN Complementario , Regulación hacia Abajo , Silenciador del Gen , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Hidroxilación , Liasas Intramoleculares/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Oxigenasas de Función Mixta/genética , Picratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas , Tubérculos de la Planta/enzimología , Plantas Modificadas Genéticamente , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
7.
Plant Physiol Biochem ; 49(8): 891-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21620719

RESUMEN

Oxidative stress is one of the major causative factors for injury to plants exposed to environmental stresses. Plants have developed diverse defense mechanisms for scavenging oxidative stress-inducing molecules. The antioxidative enzyme 2-cysteine peroxiredoxin (2-Cys Prx) removes peroxides and protects the photosynthetic membrane from oxidative damage. In this study, transgenic potato (Solanum tuberosum L. cv. Atlantic) expressing At2-Cys Prx under control of the oxidative stress-inducible SWPA2 promoter or enhanced CaMV 35S promoter (referred to as SP and EP plants, respectively) was generated using Agrobacterium-mediated transformation. The transgenic plants were tested for tolerance to stress. Following treatment with 3 µM methyl viologen (MV), leaf discs from SP and EP plants showed approximately 33 and 15% less damage than non-transformed (NT) plants. When 300 µM MV was sprayed onto whole plants, the photosynthetic activity of SP plants decreased by 25%, whereas that of NT plants decreased by 60%. In addition, SP plants showed enhanced tolerance to high temperature at 42 °C. After treatment at high temperature, the photosynthetic activity of SP plants decreased by about 7% compared to plants grown at 25 °C, whereas it declined by 31% in NT plants. These results indicate that transgenic potato can efficiently regulate oxidative stress from various environmental stresses via overexpression of At2-Cys Prx under control of the stress-inducible SWPA2 promoter.


Asunto(s)
Proteínas de Arabidopsis/genética , Estrés Oxidativo/genética , Peroxirredoxinas/genética , Solanum tuberosum/fisiología , Agrobacterium/genética , Regulación de la Expresión Génica de las Plantas , Calor , Paraquat/farmacología , Fotosíntesis , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Solanum tuberosum/efectos de los fármacos , Transformación Genética
8.
Physiol Plant ; 140(2): 153-62, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20553417

RESUMEN

Oxidative stress is a major threat for plants exposed to various environmental stresses. Previous studies found that transgenic potato plants expressing both copper zinc superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) (referred to as SSA plants), or nucleoside diphosphate kinase 2 (NDPK2) (SN plants), showed enhanced tolerance to methyl viologen (MV)-induced oxidative stress and high temperature. This study aimed to develop transgenic plants that were more tolerant of oxidative stress by introducing the NDPK2 gene into SSA potato plants under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter to create SSAN plants. SSAN leaf discs and whole plants showed enhanced tolerance to MV, as compared to SSA, SN or non-transgenic (NT) plants. SSAN plants sprayed with 400 µM MV exhibited about 53 and 83% less visible damage than did SSA and SN plants, respectively. The expression levels of the CuZnSOD, APX and NDPK2 genes in SSAN plants following MV treatment correlated well with MV tolerance. SOD, APX, NDPK and catalase antioxidant enzyme activities were also increased in MV-treated SSAN plants. In addition, SSAN plants were more tolerant to high temperature stress at 42°C, exhibiting a 6.2% reduction in photosynthetic activity as compared to plants grown at 25°C. In contrast, the photosynthetic activities of SN and SSA plants decreased by 50 and 18%, respectively. These results indicate that the simultaneous overexpression of CuZnSOD, APX and NDPK2 is more effective than single or double transgene expression for developing plants with enhanced tolerance to various environmental stresses.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Paraquat/farmacología , Solanum tuberosum/genética , Temperatura , Transgenes/genética , Adaptación Fisiológica/genética , Ascorbato Peroxidasas , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Herbicidas/farmacología , Nucleósido-Difosfato Quinasa/genética , Peroxidasas/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/genética
9.
Physiol Plant ; 138(4): 520-33, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20059737

RESUMEN

Plants synthesize compatible solutes such as glycinebetaine (GB) in response to abiotic stresses. To evaluate the synergistic and protective effect of GB, transgenic potato plants expressing superoxide dismutase (SOD) and ascorbate peroxidase (APX) targeting to chloroplasts (referred to as SSA plants) were retransformed with a bacterial choline oxidase (codA) gene to synthesize GB in chloroplast in naturally occurring non-accumulator potato plants (including SSA) under the control of the stress-inducible SWPA2 promoter (referred to as SSAC plants). GB accumulation resulted in enhanced protection of these SSAC plants and lower levels of H(2)O(2) compared with SSA and non-transgenic (NT) plants after methyl viologen (MV)-mediated oxidative stress. Additionally, SSAC plants demonstrated synergistically enhanced tolerance to salt and drought stresses at the whole-plant level. GB accumulation in SSAC plants helped to maintain higher activities of SOD, APX and catalase following oxidative, salt and drought stress treatments than is observed in SSA and NT plants. Conclusively, GB accumulation in SSAC plants along with overexpression of antioxidant genes rendered the plants tolerant to multiple environmental stresses in a synergistic fashion.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Cloroplastos/enzimología , Peroxidasas/metabolismo , Solanum tuberosum/enzimología , Superóxido Dismutasa/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Oxidorreductasas de Alcohol/genética , Ascorbato Peroxidasas , Betaína/metabolismo , Western Blotting , Cloroplastos/genética , Sequías , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Paraquat/farmacología , Peroxidasas/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cloruro de Sodio/farmacología , Solanum tuberosum/genética , Superóxido Dismutasa/genética , Agua/farmacología
10.
Plant Cell Rep ; 27(4): 687-98, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18057939

RESUMEN

Transgenic potato plants (Solanum tuberosum L. cv. Superior) with the ability to synthesize glycinebetaine (GB) in chloroplasts (referred to as SC plants) were developed via the introduction of the bacterial choline oxidase (codA) gene under the control of an oxidative stress-inducible SWPA2 promoter. SC1 and SC2 plants were selected via the evaluation of methyl viologen (MV)-mediated oxidative stress tolerance, using leaf discs for further characterization. The GB contents in the leaves of SC1 and SC2 plants following MV treatment were found to be 0.9 and 1.43 micromol/g fresh weight by HPLC analysis, respectively. In addition to reduced membrane damage after oxidative stress, the SC plants evidenced enhanced tolerance to NaCl and drought stress on the whole plant level. When the SC plants were subjected to two weeks of 150 mM NaCl stress, the photosynthetic activity of the SC1 and SC2 plants was attenuated by 38 and 27%, respectively, whereas that of non-transgenic (NT) plants was decreased by 58%. Under drought stress conditions, the SC plants maintained higher water contents and accumulated higher levels of vegetative biomass than was observed in the NT plants. These results indicate that stress-induced GB production in the chloroplasts of GB non-accumulating plants may prove useful in the development of industrial transgenic plants with increased tolerance to a variety of environmental stresses for sustainable agriculture applications.


Asunto(s)
Oxidorreductasas de Alcohol/biosíntesis , Cloroplastos/fisiología , Solanum tuberosum/fisiología , Oxidorreductasas de Alcohol/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Betaína/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Desastres , Estrés Oxidativo , Fotosíntesis , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Regiones Promotoras Genéticas , Cloruro de Sodio/farmacología , Solanum tuberosum/enzimología , Solanum tuberosum/genética
11.
Transgenic Res ; 17(4): 705-15, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18027101

RESUMEN

In plants, nucleoside diphosphate kinase 2 (NDPK2) is known to regulate the expression of antioxidant genes. In this study, we developed transgenic potato plants (Solanum tuberosum L. cv. Atlantic) expressing Arabidopsis NDPK2 (AtNDPK2) gene in cytosols under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SN plants) or enhanced CaMV 35S promoter (EN plants) and evaluated their tolerance to various environmental stress, including methyl viologen (MV)-mediated oxidative stress, high temperature, and salt stress. When 250 muM MV was sprayed to whole plants, plants expressing NDPK2 showed significantly an enhanced tolerance compared to non-transgenic (NT) plants. SN plants and EN plants showed 51% and 32% less visible damage than NT plants, respectively. Transcript level of AtNDPK2 gene and NDPK2 activity in SN plants following MV treatment well reflected the plant phenotype. Ascorbate peroxidase (APX) activity was also increased in MV-treated SN plants. In addition, SN plants showed enhanced tolerance to high temperature at 42 degrees C. The photosynthetic activity of SN plants after treatment of high temperature was decreased by about 10% compared to the plants grown at 25 degrees C, whereas that of NT plants declined by 30%. When treated with 80 mM NaCl onto the plantlets, both SN plants and EN plants also showed a significant reduced damage in root growth. These results indicate that overexpression of NDPK2 under the stress-inducible SWPA2 promoter might efficiently regulate the oxidative stress derived from various environmental stresses.


Asunto(s)
Adaptación Fisiológica/genética , Nucleósido-Difosfato Quinasa/metabolismo , Estrés Oxidativo/fisiología , Plantas Modificadas Genéticamente/genética , Cloruro de Sodio/farmacología , Solanum tuberosum/genética , Arabidopsis/enzimología , Ascorbato Peroxidasas , Regulación de la Expresión Génica de las Plantas , Nucleósido-Difosfato Quinasa/genética , Paraquat/farmacología , Peroxidasas/genética , Peroxidasas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solanum tuberosum/metabolismo , Temperatura
12.
Plant Physiol Biochem ; 46(2): 196-204, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18006323

RESUMEN

A new dehydration responsive element-binding (DREB) protein gene encoding for an AP2/EREBP-type transcription factor was isolated by screening of the cDNA library for dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas). Its cDNA (referred to as swDREB1) fragment of 1206bp was sequenced from, which a 257 amino acid residue protein was deduced with a predicted molecular weight of 28.17kDa. A search of the protein BLAST database revealed that this protein can be classified as a typical member of a DREB subfamily. RT-PCR and northern analyses revealed diverse expression patterns of the swDREB1 gene in various tissues of intact sweetpotato plant, and in leaves and fibrous roots exposed to different stresses. The swDREB1 gene was highly expressed in stems and tuberous roots. In fibrous roots, its mRNA accumulation profiles clearly showed strong expression under various abiotic stress conditions such as dehydration, chilling, salt, methyl viologen (MV), and cadmium (Cd) treatment, whereas it did not respond to abscisic acid (ABA) or copper (Cu) treatment. The above results indicate that swDREB1 may be involved in the process of the plant response to diverse abiotic stresses through an ABA-independent pathway.


Asunto(s)
ADN Complementario/genética , Ipomoea batatas/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ipomoea batatas/efectos de los fármacos , Ipomoea batatas/metabolismo , Datos de Secuencia Molecular , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo , Agua/metabolismo , Agua/farmacología
13.
Plant Cell Rep ; 25(12): 1380-6, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16841217

RESUMEN

Oxidative stress is a major damaging factor for plants exposed to environmental stresses. In order to develop transgenic potato plants with enhanced tolerance to environmental stress, the genes of both Cu/Zn superoxide dismutase and ascorbate peroxidase were expressed in chloroplasts under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants). SSA plants showed enhanced tolerance to 250 microM methyl viologen, and visible damage in SSA plants was one-fourth that of non-transgenic (NT) plants that were almost destroyed. In addition, when SSA plants were treated with a high temperature of 42 degrees C for 20 h, the photosynthetic activity of SSA plants decreased by only 6%, whereas that of NT plants decreased by 29%. These results suggest that the manipulation of the antioxidative mechanism of the chloroplasts may be applied in the development of industrial transgenic crop plants with increased tolerance to multiple environmental stresses.


Asunto(s)
Adaptación Fisiológica , Cloroplastos/enzimología , Estrés Oxidativo , Peroxidasas/genética , Solanum tuberosum/genética , Superóxido Dismutasa/genética , Temperatura , Adaptación Fisiológica/efectos de los fármacos , Ascorbato Peroxidasas , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Paraquat/farmacología , Peroxidasas/metabolismo , Hojas de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solanum tuberosum/citología , Solanum tuberosum/efectos de los fármacos , Superóxido Dismutasa/metabolismo
14.
Plant Physiol Biochem ; 43(1): 55-60, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15763666

RESUMEN

Superoxide dismutase (SOD) cDNA, mSOD2, encoding cytosolic copper/zinc SOD (CuZnSOD) cDNA was isolated from suspension-cultured cells of cassava (Manihot esculenta Crantz) by cDNA library screening, and its expression was investigated in relation to environmental stress. mSOD2 is 774 bp in length with an open reading frame (ORF) of 152 amino acids, corresponding to a protein of predicted molecular mass 15 kDa and a pI of 5.22. One copy of the mSOD2 gene was found to be present in the cassava genome by Southern analysis using an mSOD2 cDNA-specific probe. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed diverse expression patterns for the mSOD2 gene in various tissues of intact cassava plants, at various stages of the growth in suspension cultures, and in the leaf tissues exposed to different stresses. The mSOD2 gene was highly expressed in suspension-cultured cells and in the stems of intact plants. However, it was expressed at low levels in leaves and roots. During suspension cell growth, the mSOD2 transcript progressively increased during culture. Moreover, the mSOD2 gene in excised cassava leaves responded to various stresses in different ways. In particular, it was highly induced in leaf tissue by several abiotic stresses, including high temperature (37 degrees C), chilling (4 degrees C), methyl viologen (MV) exposure, and wounding treatment. These results indicate that the mSOD2 gene is involved in the antioxidative process triggered by oxidative stress induced by environmental change.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Manihot/enzimología , Hojas de la Planta/enzimología , Raíces de Plantas/enzimología , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Células Cultivadas , Clonación Molecular , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Biblioteca de Genes , Manihot/efectos de los fármacos , Manihot/genética , Datos de Secuencia Molecular , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Paraquat/toxicidad , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Superóxido Dismutasa/genética , Temperatura
15.
Planta Med ; 69(11): 1005-8, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14735437

RESUMEN

In order to produce a human lactoferrin (hLf) protein in cultured plant cells, we developed Korean ginseng (Panax ginseng) cell line using an oxidative stress-inducible peroxidase (SWPA2) promoter and characterized the production of human lactoferrin in cultured cells. A construct containing a targeting signal peptide from tobacco endoplasmic reticulum fused to human lactoferrin cDNA under the control of SWPA2 promoter was engineered. Transgenic Korean ginseng cell lines that produced a recombinant hLf protein were successfully generated and confirmed by PCR and Southern blot analyses. Western blot and ELISA analyses showed that hLf protein was synthesized in the transgenic cells. The production of hLf showed a maximal level (up to 3.0% of total soluble protein) in the stationary phase of callus cultures. These results suggest that the transgenic cell lines in this study will be biotechnologically useful for the commercial production of hLf protein in cell cultures, with no need for purification.


Asunto(s)
Lactoferrina/biosíntesis , Lactoferrina/genética , Nicotiana/genética , Nicotiana/metabolismo , Panax , Fitoterapia , Células Cultivadas , Humanos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA