Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 317: 116851, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37385574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Allium cepa L. (A. cepa) is one of the oldest cultivated plants in the world. A. cepa has been used in traditional folk medicine to treat inflammatory disease in several regions, such as Palestine and Serbia. A. cepa peel has a higher content of flavonoids, such as quercetin, than the edible parts. These flavonoids alleviate inflammatory diseases. However, the anti-inflammatory effects of A. cepa peel extract-obtained using various extraction methods-and their underlying mechanisms require further investigation. AIM OF THE STUDY: Although research to find safe anti-inflammatory substances in various natural products has been actively conducted for many years, it is important to continue identifying potential anti-inflammatory effects in natural materials. The purpose of this study was to investigate the ethnopharmacological properties of the A. cepa peel extract, whose efficacy when obtained through different extraction methods and underlying action mechanisms is not well known. The present study specifically aimed to observe the anti-inflammatory effects of the A. cepa peel extracts obtained using various extraction methods and the related detailed mechanisms of A. cepa peel extracts in lipopolysaccharide (LPS)-induced RAW264.7 cells. MATERIALS AND METHODS: The total flavonoid content of the A. cepa peel extracts was determined the diethylene glycol colorimetric method and measured using a calibration curve prepared using quercetin as a standard solution. The antioxidant activity was evaluated using the ABTS assay, and cytotoxicity was measured using the MTT assay. NO production was measured using Griess reagent. Protein levels were measured by western blotting, and mRNA expression was measured by RT-qPCR. Secreted cytokines were analyzed using ELISA or cytokine arrays. In the GSE160086 dataset, we calculated Z-scores for individual genes of interest and displayed using a heat map. RESULTS: Of the three A. cepa peel extracts obtained using different extraction methods, the A. cepa peel 50% EtOH extract (AP50E) was the most effective at inhibiting LPS-induced nitric oxide (NO) and inducible nitric oxide synthase (iNOS). Furthermore, AP50E significantly reduced the levels of pro-inflammation cytokines interleukin (IL)-1α, IL-1ß, IL-6, and IL-27. Additionally, AP50E directly inhibited the Janus kinase-signaling transducer and activator of transcription (JAK-STAT) pathway. CONCLUSIONS: These results showed that AP50E exhibited an anti-inflammatory effect in LPS-induced RAW264.7 mouse macrophages by directly inhibiting JAK-STAT signaling. Based on these findings, we propose AP50E as a potential candidate for the development of preventive or therapeutic agents against inflammatory diseases.


Asunto(s)
Quinasas Janus , Transducción de Señal , Animales , Ratones , Quinasas Janus/metabolismo , Lipopolisacáridos/farmacología , Cebollas , Macrófagos , Quercetina/farmacología , Quercetina/metabolismo , Factores de Transcripción STAT/metabolismo , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Citocinas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Óxido Nítrico/metabolismo
2.
J Ethnopharmacol ; 313: 116598, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146844

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chamaecyparis obtusa (C. obtusa, cypress species) is a plant that grows mainly in the temperate Northern Hemisphere and has long been used as a traditional anti-inflammatory treatment in East Asia. C. obtusa contains phytoncides, flavonoids, and terpenes, which have excellent anti-cancer effects and have been reported to prevent the progression of various cancers. However, the detailed mechanisms underlying the anti-cancer effects of C. obtusa extracts are unknown. AIM OF THE STUDY: We sought to confirm the anti-cancer effects of C. obtusa leaf extracts and to reveal the mechanism of action, with the possibility of its application in the treatment or prevention of cancer. MATERIAL &METHODS: The cytotoxicity of C. obtusa leaf extracts was confirmed using an MTT assay. Intracellular changes in protein levels were measured by immunoblotting, and mRNA levels were measured with qRT-PCR. Wound healing assay and transwell migration assay were used to evaluate the metastatic potential of breast cancer cells. The extract-induced apoptosis was observed using IncuCyte Annexin V Red staining analysis. A syngeneic breast cancer mouse model was established by injecting 4T1-Luc mouse breast cancer cells into the fat pad of female BALB/c mice, and the extract was administered orally. Luciferin solution was injected intraperitoneally to assess primary tumor development and metastasis by bioluminescence. RESULTS: C. obtusa leaf extracts were extracted with boiling water, 70% EtOH, and 99% EtOH. Among the extracts, the 99% EtOH extract of C. obtusa leaf (CO99EL) most clearly inhibited the tyrosine phosphorylation of Signal Transducer and Activator of Transcription 3 (pY-STAT3) in MDA-MB-231 breast cancer cells at a concentration of 25 and 50 µg/mL. In addition, CO99EL strongly inhibited not only endogenous pY-STAT3 levels but also IL-6-induced STAT3 activation in various types of cancer cells, including breast cancer. CO99EL inhibited metastatic potential by downregulating the expression of N-cadherin, fibronectin, TWIST, MMP2, and MMP9 in MDA-MB-231 breast cancer cells. CO99EL also induced apoptotic cell death by increasing cleaved caspase-3 and decreasing anti-apoptotic proteins Bcl-2 and Bcl-xL. In an in vivo syngeneic breast cancer mouse model, 100 mg/kg CO99EL suppressed tumor growth and induced apoptosis of cancer cells. Moreover, CO99EL significantly inhibited lung metastasis from primary breast cancer. CONCLUSIONS: Our study demonstrated that 100 mg/kg CO99EL has potent anti-tumor effects against breast cancer, thus suggesting that 100 mg/kg CO99EL has potential applications in the treatment and prevention of breast cancer.


Asunto(s)
Chamaecyparis , Neoplasias , Ratones , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Cicatrización de Heridas , Antiinflamatorios/farmacología , Agua/farmacología , Etanol/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias/tratamiento farmacológico
3.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L625-L638, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36920218

RESUMEN

In obesity, disturbed glutamine metabolism contributes to enhanced inflammation by inducing alterations in immune cells. As macrophages and innate lymphoid cells (ILCs) are known to be involved in the pathogenesis of obesity-related asthma, we tested our hypothesis that altered glutamine metabolism may link obesity to airway hyperresponsivenss (AHR), a cardinal feature of asthma, focusing on these innate immune cells. Four-week-old male C57BL/6 mice were fed a high-fat diet (HFD) for 13 wk in the presence or absence of BPTES [Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, a selective inhibitor of glutaminase 1 which converts glutamine to glutamate] and their blood, lung, and adipose tissues were analyzed. We then conducted in vitro experiments using bone marrow-derived macrophages (BMDMs) and mouse alveolar macrophage cell line. Furthermore, we investigated plasma glutamine and glutamate levels in obese and nonobese asthmatics. BPTES treatment prevented HFD-induced AHR and significantly decreased IL-1ß+ classically activated macrophages (M1s) and type 3 ILCs (ILC3s) which increased in the lungs of HFD-fed obese mice. In in vitro experiments, BPTES treatment or glutamine supplement significantly reduced the proportion of IL-1ß+NLRP3+ M1s in lipopolysaccharide-stimulated BMDMs and mouse alveolar macrophage cell line. BPTES treatment also significantly reduced the IL-17 producing ILC3s differentiated from ILCs in naïve mouse lung. In addition, plasma glutamate/glutamine ratios were significantly higher in obese asthmatics compared to nonobese asthmatics. Inhibition of glutaminolysis reverses AHR in HFD-induced obese mice and decreases IL-1ß + NLRP3+ M1s and IL-17 producing ILC3s, which suggests altered glutamine metabolism may have a role in the pathogenesis of obesity-related AHR.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Animales , Masculino , Ratones , Asma/metabolismo , Dieta Alta en Grasa/efectos adversos , Glutamatos , Glutaminasa , Glutamina/farmacología , Glutamina/metabolismo , Inmunidad Innata , Interleucina-17 , Linfocitos , Ratones Endogámicos C57BL , Ratones Obesos , Proteína con Dominio Pirina 3 de la Familia NLR , Obesidad/complicaciones , Hipersensibilidad Respiratoria/metabolismo , Interleucina-1beta
4.
Drug Des Devel Ther ; 15: 423-440, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692613

RESUMEN

BACKGROUND: To date, outcome data with a large sample size and data regarding the clinical outcomes of pharmacokinetic-guided (PK) dosing of vancomycin are limited. AIM: We evaluated the pharmacokinetic and clinical outcomes of a PK-guided dosing advisory program, pharmacokinetic consultation service (PKCS), in vancomycin treatment. METHODS: We investigated vancomycin therapeutic drug monitoring (TDM) and PKCS use through a retrospective review of patients who had serum vancomycin trough concentration data from October 2017 to November 2018. Among these patients, we selected non-critically ill adult patients satisfying our selection criteria to evaluate the effect of PKCS. Target trough attainment rate, time to target attainment, vancomycin-induced nephrotoxicity (VIN), vancomycin treatment failure rate, and duration of vancomycin therapy were compared between patients whose dosing was adjusted according to PKCS (PKCS group), and those whose dose was adjusted at the discretion of the attending physician (non-PKCS group). RESULTS: A total of 280 patients met the selection criteria for the VIN analysis (PKCS, n=134; non-PKCS, n=146). The incidence of VIN was similar between the two groups (PKCS, n=5; non-PKCS, n=5); however, the target attainment rate was higher in the PKCS group (75% vs 60%, P = 0.012). The time to target attainment was similar between the two groups. Further exclusions yielded 112 patients for the clinical outcome evaluation (PKCS, n=51; non-PKCS, n=61). The treatment failure rate was similar, and the duration of vancomycin therapy was longer in the PKCS group (12 vs 8 days, P = 0.008). CONCLUSION: In non-critically ill patients, an increase in target trough achieved by PKCS did not lead to decreased vancomycin treatment failures, shorter vancomycin treatment, or decreased nephrotoxicity in vancomycin treatment. Considering the excessive amount of effort currently put into vancomycin dosing and monitoring, more selective criteria for individualized pharmacokinetic-guided dosing needs to be applied.


Asunto(s)
Antibacterianos/farmacocinética , Monitoreo de Drogas , Staphylococcus aureus/efectos de los fármacos , Vancomicina/farmacocinética , Anciano , Antibacterianos/administración & dosificación , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Derivación y Consulta , Estudios Retrospectivos , Resultado del Tratamiento , Vancomicina/administración & dosificación
5.
J Med Food ; 17(5): 606-11, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24738663

RESUMEN

Aster yomena is used in traditional remedies to treat cough, asthma and insect bites; however, its therapeutic mechanism is not completely understood. To elucidate the anti-asthmatic effect of A. yomena, we investigated the anti-asthmatic characteristics of an alcohol extract of A. yomena in an ovalbumin (OVA)-induced murine asthma model. In this study, we showed that A. yomena extract inhibited the overall pathophysiological features of asthma by suppressing Th2 responses and enzymes associated with the production of inflammatory mediators. This suppression resulted in decreased Th2 type cytokines and eosinophils in the bronchoalveolar lavage fluid and OVA-specific IgE in serum. Additionally, A. yomena extract significantly decreased airway hyperresponsiveness and abrogated the histopathological changes in the lungs, which reached normal levels in the OVA-challenged mice treated with A. yomena extract. These findings suggest that A. yomena could be a promising natural agent for treating bronchial asthma in humans.


Asunto(s)
Antiasmáticos/uso terapéutico , Aster , Asma/tratamiento farmacológico , Ovalbúmina/inmunología , Extractos Vegetales/uso terapéutico , Animales , Asma/inmunología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/análisis , Modelos Animales de Enfermedad , Eosinófilos , Etanol , Femenino , Inmunoglobulina E/sangre , Ratones , Ratones Endogámicos BALB C , Fitoterapia , Células Th2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA