Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612399

RESUMEN

Osteosarcoma, which has poor prognosis after metastasis, is the most common type of bone cancer in children and adolescents. Therefore, plant-derived bioactive compounds are being actively developed for cancer therapy. Artemisia apiacea Hance ex Walp. is a traditional medicinal plant native to Eastern Asia, including China, Japan, and Korea. Vitexicarpin (Vitex), derived from A. apiacea, has demonstrated analgesic, anti-inflammatory, antitumour, and immunoregulatory properties; however, there are no published studies on Vitex isolated from the aerial parts of A. apiacea. Thus, this study aimed to evaluate the antitumour activity of Vitex against human osteosarcoma cells. In the present study, Vitex (>99% purity) isolated from A. apiacea induced significant cell death in human osteosarcoma MG63 cells in a dose- and time-dependent manner; cell death was mediated by apoptosis, as evidenced by the appearance of cleaved-PARP, cleaved-caspase 3, anti-apoptotic proteins (Survivin and Bcl-2), pro-apoptotic proteins (Bax), and cell cycle-related proteins (Cyclin D1, Cdk4, and Cdk6). Additionally, a human phosphokinase array proteome profiler revealed that Vitex suppressed AKT-dependent downstream kinases. Further, Vitex reduced the phosphorylation of PRAS40, which is associated with autophagy and metastasis, induced autophagosome formation, and suppressed programmed cell death and necroptosis. Furthermore, Vitex induced antimetastatic activity by suppressing the migration and invasion of MMP13, which is the primary protease that degrades type I collagen for tumour-induced osteolysis in bone tissues and preferential metastasis sites. Taken together, our results suggest that Vitex is an attractive target for treating human osteosarcoma.


Asunto(s)
Neoplasias Óseas , Flavonoides , Osteosarcoma , Humanos , Apoptosis , Neoplasias Óseas/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt
2.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362346

RESUMEN

Suffruticosol B (Suf-B) is a stilbene found in Paeonia suffruticosa ANDR., which has been traditionally used in medicine. Stilbenes and their derivatives possess various pharmacological effects, such as anticancer, anti-inflammatory, and anti-osteoporotic activities. This study aimed to explore the bone-forming activities and mechanisms of Suf-B in pre-osteoblasts. Herein, >99.9% pure Suf-B was isolated from P. suffruticosa methanolic extracts. High concentrations of Suf-B were cytotoxic, whereas low concentrations did not affect cytotoxicity in pre-osteoblasts. Under zero levels of cytotoxicity, Suf-B exhibited bone-forming abilities by enhancing alkaline phosphatase enzyme activities, bone matrix calcification, and expression levels with non-collagenous proteins. Suf-B induces intracellular signal transduction, leading to nuclear RUNX2 expression. Suf-B-stimulated differentiation showed increases in autophagy proteins and autophagosomes, as well as enhancement of osteoblast adhesion and transmigration on the ECM. These results indicate that Suf-B has osteogenic qualities related to differentiation, autophagy, adhesion, and migration. This also suggests that Suf-B could have a therapeutic effect as a phytomedicine in skeletal disorders.


Asunto(s)
Paeonia , Estilbenos , Osteogénesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/metabolismo , Autofagia , Paeonia/metabolismo , Estilbenos/farmacología , Diferenciación Celular
3.
J Cell Mol Med ; 26(16): 4520-4529, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35796406

RESUMEN

Scoparone (SCOP), an active and efficient coumarin compound derived from Artemisia capillaris Thunb, has been used as a traditional Chinese herbal medicine. Herein, we investigated the effects of SCOP on the osteogenic processes using MC3T3-E1 pre-osteoblasts in in vitro cell systems. SCOP (C11 H10 O4 , > 99.17%) was purified and identified from A. capillaries. SCOP (0.1 to 100 µM concentrations) did not have cytotoxic effects in pre-osteoblasts; however, it promoted alkaline phosphatase (ALP) staining and activity, and mineralized nodule formation under early and late osteogenic induction. SCOP elevated osteogenic signals through the bone morphogenetic protein 2 (BMP2)-Smad1/5/8 pathway, leading to the increased expression of runt-related transcription factor 2 (RUNX2) with its target protein, matrix metallopeptidase 13 (MMP13). SCOP also induced the non-canonical BMP2-MAPKs pathway, but not the Wnt3a-ß-catenin pathway. Moreover, SCOP promoted autophagy, migration and adhesion under the osteogenic induction. Overall, the findings of this study demonstrated that SCOP has osteogenic effects associated with cell differentiation, adhesion, migration, autophagy and mineralization.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteogénesis , Autofagia , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Cumarinas/farmacología , Osteoblastos/metabolismo
4.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199016

RESUMEN

Paeonia suffruticosa is a magnificent and long-lived woody plant that has traditionally been used to treat various diseases including inflammatory, neurological, cancer, and cardiovascular diseases. In the present study, we demonstrated the biological mechanisms of paeonoside (PASI) isolated from the dried roots of P. suffruticosa in pre-osteoblasts. Herein, we found that PASI has no cytotoxic effects on pre-osteoblasts. Migration assay showed that PASI promoted wound healing and transmigration in osteoblast differentiation. PASI increased early osteoblast differentiation and mineralized nodule formation. In addition, PASI enhanced the expression of Wnt3a and bone morphogenetic protein 2 (BMP2) and activated their downstream molecules, Smad1/5/8 and ß-catenin, leading to increases in runt-related transcription factor 2 (RUNX2) expression during osteoblast differentiation. Furthermore, PASI-mediated osteoblast differentiation was attenuated by inhibiting the BMP2 and Wnt3a pathways, which was accompanied by reduction in the expression of RUNX2 in the nucleus. Taken together, our findings provide evidence that PASI enhances osteoblast differentiation and mineralized nodules by regulating RUNX2 expression through the BMP2 and Wnt3a pathways, suggesting a potential role for PASI targeting osteoblasts to treat bone diseases including osteoporosis and periodontitis.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Glicósidos/farmacología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Extractos Vegetales/farmacología , Biomarcadores , Proteína Morfogenética Ósea 2/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Glicósidos/química , Humanos , Inmunohistoquímica , Espectroscopía de Resonancia Magnética/efectos adversos , Osteogénesis/efectos de los fármacos , Extractos Vegetales/química , Vía de Señalización Wnt
5.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066458

RESUMEN

Paeonia suffruticosa has been extensively used as a traditional medicine with various beneficial effects; paeonolide (PALI) was isolated from its dried roots. This study aimed to investigate the novel effects and mechanisms of PALI in pre-osteoblasts. Here, cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP) and by staining it with Alizarin red S (ARS). Cell migration was assessed using wound healing and Boyden chamber assays. Western blot and immunofluorescence analyses were used to examine the intracellular signaling pathways and differentiation proteins. PALI (0.1, 1, 10, 30, and 100 µM) showed no cytotoxic or proliferative effects in pre-osteoblasts. In the absence of cytotoxicity, PALI (1, 10, and 30 µM) promoted wound healing and transmigration during osteoblast differentiation. ALP staining demonstrated that PALI (1, 10, and 30 µM) promoted early osteoblast differentiation in a dose-dependent manner, and ARS staining showed an enhanced mineralized nodule formation, a key indicator of late osteoblast differentiation. Additionally, low concentrations of PALI (1 and 10 µM) increased the bone morphogenetic protein (BMP)-Smad1/5/8 and Wnt-ß-catenin pathways in osteoblast differentiation. Particularly, PALI (1 and 10 µM) increased the phosphorylation of ERK1/2 compared with BMP2 treatment, an FDA-approved drug for bone diseases. Furthermore, PALI-mediated early and late osteoblast differentiation was abolished in the presence of the ERK1/2 inhibitor U0126. PALI-induced RUNX2 (Cbfa1) expression and nuclear localization were also attenuated by blocking the ERK1/2 pathway during osteoblast differentiation. We suggest that PALI has biologically novel activities, such as enhanced osteoblast differentiation and bone mineralization mainly through the intracellular ERK1/2-RUNX2 signaling pathway, suggesting that PALI might have therapeutic action and aid the treatment and prevention of bone diseases, such as osteoporosis and periodontitis.


Asunto(s)
Acetofenonas/farmacología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Animales , Proteína Morfogenética Ósea 2/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Proteína Wnt3/metabolismo
6.
Am J Chin Med ; 49(4): 883-900, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33829967

RESUMEN

Sanguisorba officinalis L. (Rosaceae) is a perennial herbaceous plant and its roots have been used as an important traditional medicine for over 2000 years. Ziyuglycoside I (Ziyu), an active compound isolated from the roots of S. officinalis L., has shown biological effects such as anti-oxidant, antiviral, and antiwrinkle activities. This study aimed to elucidate the underlying mechanisms of action of Ziyu on cytotoxicity, migration, and differentiation of pre-osteoblasts. Herein, at concentrations ranging from 1 to 100 [Formula: see text]M, Ziyu was not cytotoxic against pre-osteoblasts. Alkaline phosphatase activity assay and staining, and migration assay showed that Ziyu increased cell migration and promoted early osteoblast differentiation, followed by the enhancement of mineralized nodule formation in a dose-dependent manner, as indicated by Alizarin Red S staining. In addition, Ziyu increased the protein levels of runt-related transcription factor 2 (RUNX2) during osteoblast differentiation, whereas it did not affect the phosphorylation of Smad1/5/8 and GSK3b and expression of [Formula: see text]-catenin. Ziyu also activated ERK1/2 and mitogen-activated protein kinase during osteoblast differentiation, and ERK1/2 inhibitor attenuated Ziyu-mediated RUNX2 expression and nuclear accumulation. Furthermore, Ziyu-mediated early and late osteoblast differentiation was significantly suppressed by the inhibition of ERK1/2, which was accompanied by attenuation in the mRNA levels of osteoblast-related genes including bone sialoprotein, osteopontin, and osteocalcin. Taken together, the findings of this study provide evidence that Ziyu promotes cell migration, osteoblast differentiation, and bone mineralization and suggest a potential role for Ziyu in the treatment of bone diseases.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Saponinas/farmacología , Línea Celular , Humanos , Estructura Molecular , Raíces de Plantas , República de Corea , Saponinas/química , Regulación hacia Arriba
7.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32727092

RESUMEN

BACKGROUND: Plant extracts have long been regarded as useful medicines in the treatment of human diseases. Rubia cordifolia Nakai has been used as a traditional medicine, as it has pharmacological properties such as antioxidant and anti-inflammatory activity. However, the biological functions of TMARg, isolated from the roots of R. cordifolia, in osteoblast differentiation remain unknown. This study was performed to investigate the pharmacological effects and intracellular signaling of TMARg in the osteoblast differentiation of pre-osteoblast MC3T3-E1 cells and mesenchymal precursor C2C12 cells. METHODS: Cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP), and by staining it with Alizarin red S (ARS). Cell migration was determined by using migration assays. Western blot analysis and immunocytochemical analysis were used to examine the intracellular signaling pathways and differentiation proteins. RESULTS: In the present study, TMARg showed no cytotoxicity and increased the osteoblast differentiation in pre-osteoblasts, as assessed from the alkaline phosphate (ALP) staining and activity and ARS staining. TMARg also induced BMP2 expression and increased the p-smad1/5/8-RUNX2 and ß-catenin pathways in both MC3T3-E1 and C2C12 cells. Furthermore, TMARg activated mitogen-activated protein kinases (MAPKs) and increased the cell migration rate. In addition, the TMARg-mediated osteoblast differentiation was suppressed by BMP and Wnt inhibitors with the downregulation of BMP2 expression. CONCLUSION: These findings demonstrate that TMARg exerts pharmacological and biological effects on osteoblast differentiation through the activation of BMP2 and ß-catenin signaling pathways, and suggest that TMARg might be a potential phytomedicine for the treatment of bone diseases.


Asunto(s)
Antraquinonas/farmacología , Proteína Morfogenética Ósea 2/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Corteza de la Planta/química , Rubia/química , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo , Animales , Antraquinonas/química , Línea Celular , Ratones
8.
Food Chem Toxicol ; 56: 304-12, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23454146

RESUMEN

In the course of screening for neuroprotective natural products, Magnoliae Cortex showed potent inhibition of hippocampal neuronal HT22 cell death. Obovatol, honokiol, and magnolol were isolated from the ethanolic extract of Magnoliae Cortex. Isolated compounds obovatol, honokiol, and magnolol were protective against 5mM glutamate-induced cell death. When cells were stressed using glutamate, cell viability decreased to 16.98±4.58% over the control (100.00±10.15%). In contrast, 10 µM obovatol, 10 µM honokiol, and 50 µM magnolol increased cell viability to 91.80±1.70%, 93.59±1.93%, and 85.36±7.40%, respectively. The neuroprotective effects of obovatol and honokiol were attributable to the inhibition of intracellular reactive oxygen species production, followed by protection of the mitochondrial membrane potential (ΔΨm), recovery of Bcl-2 and Bid levels, inhibition of apoptosis-inducing factor expression, and phosphorylation of mitogen-activated protein kinases such as p38 kinases, extracellular signal-regulated kinases, and c-Jun N-terminal kinases. On the contrary, magnolol did not show any significant effect on the ΔΨm and apoptotic factors. Among three compounds, obovatol most strongly scavenged 2,2-diphenyl-1-picrylhydrazyl radicals and inhibited the elevation of intracellular reactive oxygen species levels in glutamate-stressed HT22 cells. These data suggest that obovatol and honokiol may have clinical applications for preventing neurodegenerative disorders.


Asunto(s)
Apoptosis/efectos de los fármacos , Lignanos/farmacología , Magnoliaceae/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Animales , Factor Inductor de la Apoptosis/metabolismo , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Compuestos de Bifenilo/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácido Glutámico/efectos adversos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Éteres Fenílicos/farmacología , Fosforilación , Picratos/farmacología , Especies Reactivas de Oxígeno , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA