Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 793: 148401, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34166903

RESUMEN

We evaluated the potential impacts of atmospheric deposition on marine productivity and inorganic carbon chemistry in the northwestern Pacific Ocean (8-39°N, 125-157°E). The nutrient concentration in atmospheric total suspended particles decreased exponentially with increasing distance from the closest land-mass (Asia), clearly revealing anthropogenic and terrestrial contributions. The predicted mean depositional fluxes of inorganic nitrogen were approximately 34 and 15 µmol m-2 d-1 to the west and east of 140°E, respectively, which were at least two orders of magnitude greater than the inorganic phosphorus flux. On average, atmospheric particulate deposition would support 3-4% of the net primary production along the surveyed tracks, which is equivalent to ~2% of the dissolved carbon increment caused by the penetration of anthropogenic CO2. Our observations generally fell within the ranges observed over the past 18 years, despite an increasing trend of atmospheric pollution in the source regions during the same period, which implies high temporal and spatial variabilities of atmospheric nutrient concentration in the study area. Continued atmospheric anthropogenic nitrogen deposition may alter the relative abundances of nitrogen and phosphorus.


Asunto(s)
Nitrógeno , Fósforo , Carbono , Nitrógeno/análisis , Nutrientes , Océano Pacífico , Fósforo/análisis
2.
Science ; 334(6055): 505-9, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21940860

RESUMEN

The relative abundance of nitrate (N) over phosphorus (P) has increased over the period since 1980 in the marginal seas bordering the northwestern Pacific Ocean, located downstream of the populated and industrialized Asian continent. The increase in N availability within the study area was mainly driven by increasing N concentrations and was most likely due to deposition of pollutant nitrogen from atmospheric sources. Atmospheric nitrogen deposition had a high temporal correlation with N availability in the study area (r = 0.74 to 0.88), except in selected areas wherein riverine nitrogen load may be of equal importance. The increase in N availability caused by atmospheric deposition and riverine input has switched extensive parts of the study area from being N-limited to P-limited.


Asunto(s)
Contaminantes Atmosféricos , Atmósfera/química , Nitratos/análisis , Nitrógeno/análisis , Agua de Mar/química , Ecosistema , Océano Pacífico , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA