RESUMEN
Hypertension is the crucial modifiable risk factor for cardiovascular diseases, and efforts to identify functional foods that are effective for hypertension control are increasing. The nutgall tree (NT, Rhus chinensis Mill.) is used in traditional medicine and food because of its medicinal value. However, the role of NT in hypertension has not been investigated. Therefore, the hypotensive effect of NT leaf ethanol extract (NTE) was investigated in spontaneously hypertensive rats (SHRs). SHRs were allocated to three groups (control, 300, or 1000 mg/kg NTE), and blood pressure was measured before and after oral administration. Systolic and diastolic blood pressure significantly decreased in the NTE 1000 mg/kg group and was the lowest at 2 h after administration (-26.4 ± 10.3, -33.5 ± 9.8%, respectively). Daily NTE administration for five days also resulted in a similar effect. Further, the vasorelaxant effects and related mechanisms were investigated in the aortas of Sprague Dawley rats. NTE showed the dose-dependent blood-vessel-relaxing effect, and its mechanism involves the NO-sGC-cGMP pathway, activation of K+ channels, and reduction in the vasoconstrictive action of angiotensin II. Therefore, our study provides basic data indicating the potential use of NTE as a functional food for high blood pressure.
RESUMEN
Hypertension requires proper management because of the increased risk of cardiovascular disease and death. For this purpose, functional foods containing tannins have been considered an effective treatment. Sanguisorbae radix (SR) also contains various tannins; however, there have been no studies on its vasorelaxant or antihypertensive effects. In this study, the vasorelaxant effect of the ethanol extract of SR (SRE) was investigated in the thoracic aorta of Sprague Dawley rats. SRE (1, 3, 10, 30, and 100 µg/mL) showed this effect in a dose-dependent manner, and its mechanisms were related to the NO/cGMP pathway and voltage-gated K+ channels. Concentrations of 300 and 1000 µg/mL blocked the influx of extracellular Ca2+ and inhibited vasoconstriction. Moreover, 100 µg/mL of SRE showed a relaxing effect on blood vessels constricted by angiotensin II. The hypotensive effect of SRE was investigated in spontaneously hypertensive rats (SHR) using the tail-cuff method. Blood pressure significantly decreased 4 and 8 h after 1000 mg/kg of SRE administration. Considering these hypotensive effects and the vasorelaxant mechanisms of SRE, our findings suggests that SRE can be used as a functional food to prevent and treat hypertension. Further studies are needed for identifying the active components and determining the optimal dosage.
Asunto(s)
Hipertensión , Vasodilatadores , Ratas , Animales , Ratas Sprague-Dawley , Etanol/farmacología , Extractos Vegetales , Vasodilatación , Antihipertensivos/uso terapéutico , Presión Sanguínea , Ratas Endogámicas SHR , Taninos/farmacología , Aorta TorácicaRESUMEN
Quality consistencies of drug products are essential to guarantee expected therapeutic activities, and achieving consistent qualities for herbal products is challenging because of their physicochemical complexities and inherent variabilities. Regulatory authorities worldwide have issued regulations or guidelines for stability testing parameters and testing procedures for herbal products stored in proposed conditions. These testing parameters and methods for finished herbal products are detailed in the guidelines and regulations issued by 5 global authorities and 15 countries, that is, the Association of Southeast Asian Nations (ASEAN), the Eurasian Economic Commission (EEC), the European Medicines Agency (EMA), the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), the World Health Organization (WHO), Australia, Brazil, Canada, China, Egypt, Hong Kong, India, Japan, Kenya, Republic of Korea, the Philippines, Qatar, Switzerland, USA, and Zambia. Physical, chemical, and biological stability tests were compared between different dosage forms, and the testing conditions (temperature and relative humidity) used for long-term, accelerated, or intermediate testing were included in the guidelines and regulations. Comparisons of global regulations and guidelines addressing stability testing are fundamental for the international harmonization of herbal product quality assessments. This review aids understanding of the global situation regarding the testing of herbal product quality with respect to storages.
RESUMEN
Korean plum (Prunus mume (Siebold) Siebold & Zucc.) has long been used as a health food or herbal medicine in Asia. Previous studies have shown that several plants of the genus Prunus have vasodilatory and antihypertensive effects; we hypothesized that P. mume branches may have a vasorelaxant effect. In this study, we evaluated the effects and action mechanism of 70% ethanol extract of P. mume branch (PMB) on isolated rat aortic rings. Inhibitors such as NG-nitro-l-arginine methyl ester, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, methylene blue, indomethacin, atropine, tetraethylammonium chloride, glibenclamide, 4-aminopyridine and BaCl2 were used to investigate the mechanism of vasodilation responsible for the vascular relaxation. PMB (2-30 µg/mL) induced vasorelaxation in the presence of vascular endothelium, and all inhibitors used in this study affected the degree of relaxation. These results suggest that the vasorelaxant effect of PMB is endothelium-dependent and affects the nitric oxide-cyclic guanosine monophosphate pathway, prostacyclin pathway, muscarinic receptor pathway, and potassium channels. Our study explains that PMB may be another approach to hypertension treatment to reduce the burden of cardiovascular disease.
Asunto(s)
Aorta/efectos de los fármacos , Fitoquímicos/farmacología , Prunus/química , Vasodilatadores/farmacología , Animales , Aorta/fisiología , Cromatografía Líquida de Alta Presión , Endotelio Vascular/efectos de los fármacos , Masculino , Fitoquímicos/química , Ratas , Transducción de Señal/efectos de los fármacos , Vasodilatadores/químicaRESUMEN
Peach (Prunus persica (L.) Batsch) is a popular fruit consumed by people worldwide, owing to its pleasant flavor and high mineral nutrient content. A few plants from the genus Prunus, such as Prunus yedoensis, Prunus cerasus, and Prunus serotina have shown vasorelaxant and vasodilatory effects, to date, no study has investigated the vasorelaxation effects of the P. persica branch extract (PPE). The vasorelaxant effect of PPE was endothelium-dependent, and it was related to the NO-sGC-cGMP, vascular prostacyclin, and muscarinic receptor transduction pathway. K+ channels, such as the BKCa, KV, and KATP channels, were partially associated with PPE-induced vasorelaxation. PPE was effective in relaxing serotonin (5-HT)- or angiotensin II-induced contraction; furthermore, PPE attenuated Ca2+-induced vasoconstriction by IP3 receptors in the SR membrane, but its vasorelaxant effect was not associated with the influx of extracellular Ca2+ via receptor-operative Ca2+ channels or voltage-dependent Ca2+ channels. Recognizing the rising use of functional foods for hypertension treatment, our findings imply that PPE may be a natural antihypertensive agent.
Asunto(s)
Aorta Torácica/efectos de los fármacos , Extractos Vegetales/farmacología , Prunus persica/química , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Masculino , Osteocondrodisplasias , Extractos Vegetales/química , Ratas , Vasodilatadores/químicaRESUMEN
Studies on the safety of herbal medicine are essential for the development of new drugs. The aim of this study was to evaluate the no-observed-adverse-effect-level (NOAEL) of HVC1 (Gamisamhwangsasim-tang, a 30% ethanol extract of a mixture of Pruni Cortex, Scutellariae Radix, Coptidis Rhizoma, and Rhei Rhizoma) and identify its target organs after oral administration to Sprague-Dawley (SD) rats repeatedly for 13 weeks. Three test groups were treated with HVC1 at a dose of either 500 (low-dose), 1,000 (middle-dose), or 2,000 (high-dose) mg/kg/day. Another group received high-dose HVC1 and was observed for 4 weeks following treatment to examine recovery from the effects of the extract. All treatment groups were compared to a vehicle control group. During the study, mortality, clinical signs, body weight changes, food consumption, abnormal lesions in the eye, urinary parameters, hematological parameters, blood coagulation time, blood biochemical parameters, changes in organ weight, gross findings, and histopathological changes were examined. No systemic toxicity related to HVC1 was observed in any group, and it was concluded that the NOAEL of HVC1 was 2,000 mg/kg/day. No target organ was identified.
RESUMEN
Epimedii Herba (EH) has been used in traditional Asian medicine to treat hemiplegia following stroke. Icariin, its major active component, is used as a quality-control marker and for its various pharmacological effects. We hypothesized that icariin would show protective effects following traumatic brain injury (TBI). The TBI mouse model was induced using a controlled cortical impact method. Body weight, brain damage, motor function, and cognitive function were evaluated. Synaptogenesis markers were analyzed to investigate potential mechanisms of action. The animals were divided into six groups: sham, control, minocycline-treated group, and icariin-treated (3, 10, and 30 mg/kg, p.âo.) groups. The icariin 30 mg/kg-treated group regained body weight at 7 and 8 d post TBI. Icariin 30 mg/kg- and 10 mg/kg-treated groups showed enhanced sensory-motor function at 8 d post TBI in rotarod and balance beam tests. Icariin-treated groups showed increased recognition index in the novel object recognition test at all doses and increased spontaneous alternation in the Y-maze test at 30 mg/kg. Icariin upregulated brain-derived neurotrophic factor, synaptophysin and postsynaptic density protein 95 expressions. However, no protective effects against brain damage or neuronal death were observed. The current results provide a basis for using icariin following TBI and suggest that it could be a candidate for the development of therapeutic agents for functional recovery after TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Flavonoides/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/metabolismo , Relación Dosis-Respuesta a Droga , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Minociclina/uso terapéutico , Destreza Motora/efectos de los fármacos , Sinaptofisina/metabolismoRESUMEN
Historically, traditional herbal medicines (THMs) have been the conventional treatment strategy in the Korean medical system for treating many diseases. However, THMs have rarely been used to treat hypertension, and moreover few studies have investigated the interaction of blood pressure with the coadministration of synthetic antihypertensives. We aimed to evaluate the vasorelaxant and hypotensive effects of the traditional herbal prescription Cheonwangbosimdan (CWBSD; "Tianwangbuxindan" in Chinese) and the combination of CWBSD with amlodipine. CWBSD was extracted with distilled water at 100°C for 2 h. To investigate vasorelaxant activities, CWBSD with amlodipine (10 µg/ml) was added cumulatively (10-1,000 µg/ml) to isolated rat aortic rings precontracted using phenylephrine or potassium chloride in organ chambers. To investigate hypotensive effects, CWBSD (2,476 mg/kg) was orally administered with or without amlodipine (5 mg/kg) to spontaneously hypertensive rats (SHRs). CWBSD increased the relaxation of rat aortic rings induced by amlodipine (P < 0.01). In vivo, CWBSD coadministration with amlodipine also significantly decreased the blood pressure of SHRs compared to the amlodipine-treated group. These results suggested that CWBSD could be a useful herbal prescription to treat hypertension and we recommend establishing guidelines for the use of herbal medicines in conjunction with antihypertensive drugs, including amlodipine.
RESUMEN
Cantharidin is an active constituent of blister beetles (cantharides) which have traditionally been used for cancer treatment. Several studies have shown that cantharidin has a cytotoxic effect on various cancer cells. However, few studies have examined the effect of cantharidin on signal transducer and activator of transcription 3 (STAT3) signaling in cancer. In this study, we isolated cantharidin from cantharides by bioassay-guided fractionation and examined its inhibitory effect on STAT3 activation in human breast cancer MDA-MB-231 cells, expressing high level of phosphorylated STAT3. Cantharides were extracted with acetonitrile and separated into hexane, methylene chloride/acetonitrile, and water fractions. The methylene chloride/acetonitrile fraction was further separated into four fractions by preparative high-throughput high-performance liquid chromatography. Cantharidin was then isolated from the third fraction by countercurrent chromatography and structurally determined by comparing nuclear magnetic resonance and high-resolution mass spectrometry data. Cantharidin inhibited STAT3 tyrosine phosphorylation in MDA-MB-231 cells. Cantharidin suppressed epidermal growth factor (EGF)-induced STAT3 and PI3K/Akt signaling pathways through inhibition of EGF receptor phosphorylation. Moreover, cantharidin reduced cell proliferation and induced apoptosis with downregulation of STAT3 target genes, such as Bcl-2, COX-2, and cyclin D1. Taken together, this study provides evidence that cantharidin may be a potential therapeutic agent for triple-negative breast cancer by reducing EGFR-mediated STAT3 and Akt signaling pathways.
Asunto(s)
Cantaridina/química , Receptores ErbB/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Antineoplásicos , Escarabajos , Humanos , Transducción de SeñalRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Dangguisusan (DGSS) is a widely used prescription for the treatment of traumatic injury in Korean medicine. AIM OF THE STUDY: To demonstrate the effects of DGSS on a mouse model of traumatic brain injury (TBI) for providing scientific evidence in clinical use. MATERIALS AND METHODS: TBI was induced in a mouse model using the controlled cortical impact method. Water extract of DGSS (50, 150, and 450â¯mg/kg) was administered twice a day for 8 d. Histological analyses were performed 8 d after TBI. Moreover, beam-walking, grip-strength, and novel object recognition (NOR) tests were conducted to evaluate the effects on motor function, muscle strength, and cognitive memory function, respectively. RESULT: DGSS inhibited body weight loss, hippocampal damage, and neuronal loss in the thalamic region. Furthermore, it reduced transverse time and foot faults in the beam-walking test at 3 d and increased the muscle strength in the grip-strength test at 3 and 8 d. It also improved the recognition index (%) in the NOR test. However, DGSS did not show protective effects against total damage. CONCLUSIONS: DGSS might improve sensory-motor and cognitive functions after TBI with partial protective effects against brain damage. The present findings provide a scientific basis for the clinical use of DGSS in TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Ratones Endogámicos ICR , Neuronas/efectos de los fármacosRESUMEN
OBJECTIVE: To investigate the hypotensive and hypolipidemic effects of Modified Sanhuang Xiexin Decoction (, HVC1), a herbal prescription for the vascular diseases in Chinese medicine and evaluate the acute and subchronic oral toxicities. METHODS: Fifty-six spontaneous hypertensive rats (SHRs) were used to investigate the hypotensive and hypolipidemic effect of HVC1. Rats in the normal group (n=8) were fed with normal diet. The rats in the other groups (n=48) were fed with high fat and cholesterol diet for inducing hyperlipidemia models. Forty-eight rats were randomly divided into 6 groups [model, positive control (amlodipine, simvastain), 50, 250, and 1,000 mg/(kgâ¢d) HVC1 groups] with 8 animals in each group. Normal and model groups were treated with distilled water [1 mL/(kgâ¢d)], the positive control group was treated with amlodipine [5 mg/(kgâ¢d)] or simvastatin [10 mg/(kgâ¢d)], and the HVC1 groups were treated with HVC1 [50, 250, or 1,000 mg/(kgâ¢d)] for 8 weeks, respectively. Blood pressure (BP) of the rats was measured using a non-invasive tail cuff system. On the last day of the experiment, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) levels were measured. To investigate the safety of HVC1, acute and subchronic toxicity studies were conducted on Sprague-Dawley rats. In toxicity studies, the body weight, food and water consumption of rats were measured and clinical signs observation, ophthalmologic examinations, urinalysis, hematological analysis, and serum biochemical analysis were performed. RESULTS: A dose of 50 and 250 mg/(kgâ¢d) HVC1 lowered systolic and diastolic BP (P<0.05). HVC1 at 1,000 mg/(kgâ¢d) decreased TC, LDL-C and TG levels, respectively (P<0.01 or P<0.05) and 250 mg/(kgâ¢d) HVC1 decreased TG levels on hyperlipidemic SHRs (P<0.05). In the acute toxicity study, oral administration of HVC1 did not show any toxicity effect, and the median lethal dose value of HVC1 was greater than 5,000 mg/kg. In the subchronic toxicity study, oral administration of HVC1 for 4 weeks also did not show any toxicity effect, and the no-observedadverse-effect-level of HVC1 was established as 2,000 mg/(kgâ¢d). CONCLUSION: These results could be used as preclinical data for clinical trials that develop HVC1 as a herbal medicine for treating or preventing hypertension and hyperlipidemia.
RESUMEN
Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA) has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal) on four alternate days (days 0, 2, 4, and 6) induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36) relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36) and phospholipase A2 (0.12 mg/kg, ST36) were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α2-adrenergic receptor antagonist (idazoxan, 50 µg), but not α1-adrenergic receptor antagonist (prazosin, 30 µg), blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α2-adrenergic receptor.
Asunto(s)
Terapia por Acupuntura , Venenos de Abeja/uso terapéutico , Hiperalgesia/terapia , Neuralgia/terapia , Receptores Adrenérgicos alfa 2/fisiología , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antineoplásicos Fitogénicos , Venenos de Abeja/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Idazoxan/farmacología , Masculino , Meliteno/farmacología , Meliteno/uso terapéutico , Neuralgia/inducido químicamente , Neuralgia/fisiopatología , Paclitaxel , Fosfolipasas A2/farmacología , Fosfolipasas A2/uso terapéutico , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiologíaRESUMEN
BACKGROUND: Hypertension is one of the most important risk factors for cardiovascular disease (CVD) and a worldwide problem. Despite increases in the development of synthetic drugs for hypertension treatment, the rate of untreated and uncontrolled hypertension remains high. These drugs are effective, but can also cause side effects. Approximately 80% of the world population uses herbal medicines because of their low toxicity and better acceptability by the human body. Therefore, we attempted to identify natural medications for treating hypertension. The 70% ethanol extract of Angelica decursiva root (ADE) shows strong vasorelaxant potential, but no studies have investigated the mechanisms underlying the vasorelaxation effect of A. decursiva. METHODS: Dried root of A. decursiva was identified by DNA sequencing and was extracted once with 1 L 70% ethanol (EtOH) for 3 h in a reflux apparatus at 70 °C. ADE was evaluated for its vasorelaxant effects in rat thoracic aortas. Various inhibitors of ADE-induced vasorelaxation were used. RESULTS: ADE showed vasorelaxant effects on the intact and denuded endothelium of aortic rings pre-contracted with phenylephrine and KCl in Krebs-Henseleit solution. Tetraethylammonium and 4-aminopyridine did not alter ADE-induced vasorelaxation. However, the vasorelaxant effect of ADE was partially inhibited by pre-treatment with glibenclamide an ATP-sensitive K+ channel blocker. Furthermore, ADE concentration-dependently inhibited Ca2+ supplementation-induced vasoconstriction of aortic rings that had been pretreated with phenylephrine or KCl in Ca2+-free Krebs-Henseleit solution. CONCLUSIONS: These results suggest that ADE-induced vasorelaxation occurred in an endothelium-independent manner. The vasorelaxant effects of ADE were correlated with blockade of the KATP channel and inhibition of Ca2+ influx via receptor-operative Ca2+ channels or voltage-dependent Ca2+ channels.
Asunto(s)
Angelica/química , Aorta Torácica/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Extractos Vegetales/farmacología , Vasodilatadores/farmacología , Animales , Canales de Calcio/metabolismo , Masculino , Extractos Vegetales/química , Raíces de Plantas , Ratas , Ratas Sprague-Dawley , Vasodilatadores/químicaRESUMEN
Coenzyme Q10 (CoQ10) is a powerful antioxidant substance synthesized in the body. The current study aimed to determine whether CoQ10 suppresses inflammation and inhibits p-STAT3 expression in an experimental colitis mouse model. The mice were orally fed with CoQ10 once a day for 13 days. Histological analysis of the colons was performed by immunohistochemistry. Expression of IL-17, FOXP3, p53, AMPK, and mTOR and activation of p-STAT3 and p-STAT5 in lymph node and spleen tissues were detected by confocal microscopy of stained tissue sections. The relative mRNA expression was measured with real-time PCR, and protein levels were examined by western blot. CoQ10 reduced the disease activity index score and the colon histological score. It also reduced inflammatory mediators in the colon and increased the colon length. The expression of IL-17 and p-STAT3 was decreased with CoQ10 treatment. In contrast, CoQ10 treatment increased the expression of p-AMPK and FOXP3. Expression of anti-inflammatory cytokines was shown to increase in colitis mice treated with CoQ10. These results suggested that CoQ10 may reduce the severity of colitis and suppress inflammation through the inhibition of p-STAT3 and IL-17. These results support the use of CoQ10 as a potential targeted therapy for the treatment of colitis.
Asunto(s)
Antiinflamatorios/administración & dosificación , Colitis/tratamiento farmacológico , Colitis/inmunología , Interleucina-17/inmunología , Factor de Transcripción STAT3/inmunología , Células Th17/inmunología , Ubiquinona/análogos & derivados , Animales , Colitis/genética , Modelos Animales de Enfermedad , Humanos , Interleucina-17/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/genética , Ubiquinona/administración & dosificaciónRESUMEN
Chunghyul-Dan (CHD) is the first choice agent for the prevention and treatment of stroke at the Kyung Hee Medical Hospital. To date, CHD has been reported to have beneficial effects on brain disease in animals and humans, along with antioxidative and anti-inflammatory effects. The aim of this study was to evaluate the pharmacological effects of CHD on a traumatic brain injury (TBI) mouse model to explore the possibility of CHD use in patients with TBI. The TBI mouse model was induced using the controlled cortical impact method. CHD was orally administered twice a day for 5 d after TBI induction; mice were assessed for brain damage, brain edema, blood-brain barrier (BBB) damage, motor deficits, and cognitive impairment. Treatment with CHD reduced brain damage seen on histological examination and improved motor and cognitive functions. However, CHD did not reduce brain edema and BBB damage. In conclusion, CHD could be a candidate agent in the treatment of patients with TBI. Further studies are needed to assess the exact mechanisms of the effects during the acute-subacute phase and pharmacological activity during the chronic-convalescent phase of TBI.
RESUMEN
Epimedii Herba (EH) is an herbal medicine originating from several plants of the genus Epimedium. It is a major therapeutic option for kidney yang deficiency syndrome, which is closely related to androgen hormones and also has been used to treat hemiplegia following a stroke in traditional medicine of Korea and PR China. To date, many clinical and basic researches of EH have shown the activities on functional recovery from brain diseases. Recently, neuroplasticity, which is the spontaneous reaction of the brain in response to diseases, has been shown to accelerate functional recovery. In addition, androgen hormones including testosterone are known to be the representative of neuroplasticity factors in the brain recovery processes. In this review, we described the neuro-pharmacological activities of EH, focusing on neuroplasticity. Thirty-three kinds of papers from MEDLINE/PubMed, EMBASE, and CNKI were identified and analyzed. We categorized the results into five types based on neuroplasticity mechanisms and presented the definition of each category and briefly described the results of these papers. Altogether, we can suggest that neuroplasticity is a novel viewpoint for guiding future brain research of EH and provide the evidence for the development of new clinical applications using EH in the treatment of brain diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Epimedium/química , Plasticidad Neuronal/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , China , Humanos , Medicina Tradicional China , Fitoterapia , Plantas Medicinales/química , República de CoreaRESUMEN
BACKGROUND: HVC1 consists of Coptidis Rhizoma (dried rhizome of Coptischinensis), Scutellariae Radix (root of Scutellariabaicalensis), Rhei Rhizoma (rhizome of Rheum officinale), and Pruni Cortex (cortex of Prunusyedoensis Matsum). Although the components are known to be effective in various conditions such as inflammation, hypertension, and hypercholesterolemia, there are no reports of the molecular mechanism of its hypolipidemic effects. METHODS: We investigated the hypolipidemic effect of HVC1 in low-density lipoprotein receptor-deficient (LDLR-/-) mice fed a high-cholesterol diet for 13 weeks. Mice were randomized in to 6 groups: ND (normal diet) group, HCD (high-cholesterol diet) group, and treatment groups fed HCD and treated with simvastatin (10 mg/kg, p.o.) or HVC1 (10, 50, or 250 mg/kg, p.o.). RESULTS: HVC1 regulated the levels of total cholesterol, triglyceride (TG), low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol in mouse serum. In addition, it regulated the transcription level of the peroxisome proliferator-activated receptors (PPARs), sterol regulatory element-binding proteins (SREBP)-2, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, lipoprotein lipase (LPL), apolipoprotein B (apo B), liver X receptor (LXR), and inflammatory cytokines (IL-1ß, IL-6, and TNF-α). Furthermore, HVC1 activated 5' adenosine monophosphate-activated protein kinase (AMPK). CONCLUSION: Our results suggest that HVC1 might be effective in preventing high-cholesterol diet-induced hyperlipidemia by regulating the genes involved in cholesterol and lipid metabolism, and inflammatory responses.
Asunto(s)
Antiinflamatorios/farmacología , Colesterol/sangre , Medicamentos Herbarios Chinos/farmacología , Hiperlipidemias , Hipolipemiantes/farmacología , Inflamación , Fitoterapia , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Apolipoproteínas B/metabolismo , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Citocinas/metabolismo , Dieta Alta en Grasa , Medicamentos Herbarios Chinos/uso terapéutico , Hiperlipidemias/sangre , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/etiología , Hipolipemiantes/uso terapéutico , Inflamación/sangre , Inflamación/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Noqueados , Receptores de LDL/sangre , Receptores de LDL/deficiencia , Receptores de LDL/genética , Factores de Transcripción/metabolismo , Triglicéridos/sangreRESUMEN
Pruni Cortex has been used to treat asthma, measles, cough, urticaria, pruritus, and dermatitis in traditional Korean medicine. The objective of this study was to investigate the effects of Prunus yedoensis Matsumura bark methanol extract (PYE) on scald-induced dorsal skin wounds in rats. Scalds were produced in Sprague-Dawley rats with 100°C water and treated with 5% and 20% PYE (using Vaseline as a base), silver sulfadiazine (SSD), and Vaseline once a day for 21 days, beginning 24 hours after scald by treatment group allocation. The PYE-treated groups showed accelerated healing from 12 days after scald, demonstrated by rapid eschar exfoliation compared to the control and SSD groups. PYE-treated groups showed higher wound contraction rates and better tissue regeneration in comparison with the control group. Serum analysis showed that transforming growth factor beta 1 and vascular endothelial growth factor levels remained high or gradually increased up to day 14 in both PYE groups and then showed a sharp decline by day 21, implying successful completion of the inflammatory phase and initiation of tissue regeneration. These findings suggested that PYE is effective in promoting scald wound healing in the inflammation and tissue proliferation stages.
RESUMEN
Oxaliplatin, a chemotherapy drug, induces acute peripheral neuropathy characterized by cold allodynia, spinal glial activation and increased levels of pro-inflammatory cytokines. Herein, we determined whether Cinnamomi Cortex (C. Cortex), a widely used medicinal herb in East Asia for cold-related diseases, could attenuate oxaliplatin-induced cold allodynia in rats and the mechanisms involved. A single oxaliplatin injection (6 mg/kg, i.p.) induced significant cold allodynia signs based on tail immersion tests using cold water (4 °C). Daily oral administration of water extract of C. Cortex (WECC) (100, 200, and 400 mg/kg) for five consecutive days following an oxaliplatin injection dose-dependently alleviated cold allodynia with only a slight difference in efficacies between the middle dose at 200 mg/kg and the highest dose at 400 mg/kg. WECC at 200 mg/kg significantly suppressed the activation of astrocytes and microglia and decreased the expression levels of IL-1ß and TNF in the spinal cord after injection with oxaliplatin. Furthermore, oral administration of coumarin (10 mg/kg), a major phytocompound of C. Cortex, markedly reduced cold allodynia. These results indicate that C. Cortex has a potent anti-allodynic effect in oxaliplatin-injected rats through inhibiting spinal glial cells and pro-inflammatory cytokines. We also suggest that coumarin might play a role in the anti-allodynic effect of C. Cortex.
RESUMEN
Melatonin is metabolized in animals to cyclic 3-hydroxymelatonin (3-OHM) not by an enzymatic pathway, but by interaction with hydroxyl radicals. The production of 3-OHM in animals suggests the possible presence of 3-OHM in plants. Prior to the identification of 3-OHM in plants, we directly cloned the corresponding gene(s) responsible for 3-OHM synthesis using Escherichia coli library strains expressing genes belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily from rice. Three of 35 E. coli library strains supplemented with 1 mmol/L melatonin were found to produce 3-OHM in their extracellular medium, suggestive of three 2-ODD genes involved in 3-OHM production. The purified recombinant 2-ODD 11, 2-ODD 26, and 2-ODD 33 proteins were shown to catalyze the metabolism of melatonin to 3-OHM, with 2-ODD 11 showing the highest melatonin 3-hydroxylase (M3H) catalytic activity. Consistent with the presence of M3H genes, rice leaves supplemented with 5 mmol/L melatonin produced 3-OHM [233 µg/g fresh weight (FW)], 2-hydroxymelatonin (21 µg/g FW), and N1 -acetyl-N2 -formyl-5-methoxykynuramine (5 µg/g FW). Three M3H transcripts were induced upon the treatment of rice leaves with cadmium followed by an increase in M3H enzyme activity. Cloning of M3H genes in plants has paved the way for the studies of melatonin in plants in terms of its multiple physiological roles.