Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 14796, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287897

RESUMEN

The short chain dehydrogenase/reductase superfamily (SDR) is a large family of NAD(P)H-dependent enzymes found in all kingdoms of life. SDRs are particularly well-represented in plants, playing diverse roles in both primary and secondary metabolism. In addition, some plant SDRs are also able to catalyse a reductive cyclisation reaction critical for the biosynthesis of the iridoid backbone that contains a fused 5 and 6-membered ring scaffold. Mining the EST database of Plantago major, a medicinal plant that makes iridoids, we identified a putative 5ß-progesterone reductase gene, PmMOR (P. major multisubstrate oxido-reductase), that is 60% identical to the iridoid synthase gene from Catharanthus roseus. The PmMOR protein was recombinantly expressed and its enzymatic activity assayed against three putative substrates, 8-oxogeranial, citral and progesterone. The enzyme demonstrated promiscuous enzymatic activity and was able to not only reduce progesterone and citral, but also to catalyse the reductive cyclisation of 8-oxogeranial. The crystal structures of PmMOR wild type and PmMOR mutants in complex with NADP+ or NAD+ and either 8-oxogeranial, citral or progesterone help to reveal the substrate specificity determinants and catalytic machinery of the protein. Site-directed mutagenesis studies were performed and provide a foundation for understanding the promiscuous activity of the enzyme.


Asunto(s)
Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Plantago/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , Ácido Graso Sintasas/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , NADH NADPH Oxidorreductasas/química , Plantago/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología de Secuencia , Especificidad por Sustrato
2.
Plant Physiol ; 160(1): 249-60, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22822210

RESUMEN

Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds.


Asunto(s)
Ácido Clorogénico/química , Café/química , Ácido Quínico/análogos & derivados , Aciltransferasas/química , Aciltransferasas/genética , Secuencia de Aminoácidos , Aminoácidos/química , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Coffea/química , Coffea/genética , Activación Enzimática , Escherichia coli/química , Escherichia coli/genética , Ésteres/química , Isomerismo , Conformación Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Biosíntesis de Proteínas , Ácido Quínico/química , Semillas/química , Semillas/genética , Alineación de Secuencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA