Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Breed ; 43(5): 42, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37309390

RESUMEN

Drought stress is the major environment constraint on soybean yield, and a variety of pathways underlie drought tolerance mechanisms. Transcriptomic profiling of two soybean cultivars, drought-tolerant SS2-2 and drought-sensitive Taekwang, was performed under normal and drought conditions to identify genes involved in drought tolerance. This revealed large differences in water loss during drought treatment. Genes involved in signaling, lipid metabolism, phosphorylation, and gene regulation were overrepresented among genes that were differentially expressed between cultivars and between treatments in each cultivar. The analysis revealed transcription factors from six families, including WRKYs and NACs, showed significant SS2-2-specific upregulation. Genes involved in stress defense pathways, including MAPK signaling, Ca2+ signaling, ROS scavenging, and NBS-LRR, were also identified. Expression of non-specific phospholipases, phospholipase D, and PHOSPHATIDYL INOSITOL MONOPHOSPHATE 5 KINASE (PIP5K), which act in the lipid-signaling pathway, was greatly increased in SS2-2. The roles of PIP5K in drought stress tolerance were confirmed in Arabidopsis thaliana. Arabidopsis pip5k mutants had significantly lower survival rates under drought stress than wild-type plants. This study identified additional elements in the mechanisms used by plants to protect themselves from drought stress and provides valuable information for the development of drought-tolerant soybean cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01385-1.

2.
Plant Biotechnol J ; 17(2): 517-530, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30059608

RESUMEN

Jatropha curcas (physic nut), a non-edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up-regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed.


Asunto(s)
Euphorbiaceae/enzimología , Jatropha/enzimología , Familia de Multigenes , Liasas de Fósforo-Oxígeno/metabolismo , Biocombustibles , Mapeo Cromosómico , Euphorbiaceae/genética , Euphorbiaceae/crecimiento & desarrollo , Perfilación de la Expresión Génica , Jatropha/genética , Jatropha/crecimiento & desarrollo , Lípidos/biosíntesis , Anotación de Secuencia Molecular , Ésteres del Forbol/metabolismo , Liasas de Fósforo-Oxígeno/genética , Filogenia , Fitomejoramiento , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo
3.
Plant Physiol ; 139(4): 1881-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16299179

RESUMEN

Nodules are formed on legume roots as a result of signaling between symbiotic partners and in response to the activities of numerous genes. We cloned fragments of differentially expressed genes in spot-inoculated soybean (Glycine max) roots. Many of the induced clones were similar to known genes related to oxidative stress, such as thioredoxin and beta-carotene hydroxylase. The deduced amino acid sequences of full-length soybean cDNAs for thioredoxin and beta-carotene hydroxylase were similar to those in other species. In situ RNA hybridization revealed that the thioredoxin gene is expressed on the pericycle of 2-d-old nodules and in the infected cells of mature nodules, suggesting that thioredoxin is involved in nodule development. The thioredoxin promoter was found to contain a sequence resembling an antioxidant responsive element. When a thioredoxin mutant of yeast was transformed with the soybean thioredoxin gene it became hydrogen peroxide tolerant. These observations prompted us to measure reactive oxygen species levels. These were decreased by 3- to 5-fold in 7-d-old and 27-d-old nodules, coincident with increases in the expression of thioredoxin and beta-carotene hydroxylase genes. Hydrogen peroxide-producing regions identified with cerium chloride were found in uninoculated roots and 2-d-old nodules, but not in 7-d-old and 27-d-old nodules. RNA interference-mediated repression of the thioredoxin gene severely impaired nodule development. These data indicate that antioxidants such as thioredoxin are essential to lower reactive oxygen species levels during nodule development.


Asunto(s)
Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Proteínas de Plantas/biosíntesis , Tiorredoxinas/biosíntesis , Secuencia de Aminoácidos , Secuencia de Bases , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Genes de Plantas , Peróxido de Hidrógeno/farmacología , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Regiones Promotoras Genéticas , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Glycine max/genética , Simbiosis , Tiorredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA