Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 296: 115451, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35724744

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Patients with dementia are diagnosed with deficiency patterns and interior patterns in traditional Chinese medicine due to decreased physical strength, mental atrophy including cognitive function, and decreased motor function in the gastrointestinal tract. Since "greater yin symptom" in Shanghanlun has been interpreted as interior, deficiency, and cold pattern in traditional Chinese medicine, it is necessary to determine whether Geijigadaehwang-tang (GDT) has therapeutic effects on neurodegenerative diseases and the underlying mechanism if it has such effects. AIMS OF THE STUDY: Trimethyltin (TMT), a neurotoxic organotin compound, has been used to induce several neurodegenerative diseases, including epilepsy and Alzheimer's disease. This study aimed to evaluate the therapeutic efficacy of GDT for TMT-induced hippocampal neurodegeneration and seizures and to determine the mechanisms involved at the molecular level. MATERIALS AND METHODS: The main components of GDT were analyzed using ultra-performance liquid chromatography. TMT was used to induce neurotoxicity in microglial BV-2 cells and C57BL6 mice. GDT was administered at various doses to determine its neuroprotective and seizure inhibition effects. The inhibitory effects of GDT on TMT-induced apoptosis, inflammatory pathways, and oxidative stress pathways were determined in the mouse hippocampal tissues. RESULTS: GDT contained emodin, chrysophanol, albiflorin, paeoniflorin, 6-gingerol, and liquiritin apioside. In microglial BV-2 cells treated with TMT, GDT showed dose-dependent neuroprotective effects. Oral administration of GDT five times for 2.5 days before and after TMT injection inhibited seizures at doses of 180 and 540 mg/kg and inhibited neuronal death in the hippocampus. In hippocampal tissues extracted from mice, GDT inhibited the protein expression of ionized calcium binding adaptor molecule 1, glial fibrillary acidic protein, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3, and phosphorylated nuclear factor (NF)-κB/total-NFκB ratio. Additionally, GDT inhibited the messenger RNA levels of tumor necrosis factor-α, inducible nitric oxide synthase, apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, interleukin-1ß, nuclear factor erythroid-2-related factor 2, and heme oxygenase-1. CONCLUSION: This study's results imply that GDT might have neuroprotective potential in neurodegenerative diseases through neuronal death inhibition and anti-inflammatory and antioxidant mechanisms.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Hipocampo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Compuestos de Trimetilestaño
2.
Medicine (Baltimore) ; 99(32): e21601, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32769915

RESUMEN

RATIONALE: We report on a patient with mild traumatic brain injury (TBI) with contrecoup injury of the prefronto-thalamic tract (PTT), as demonstrated by diffusion tensor tractography (DTT). PATIENT CONCERNS: A 62-year-old female patient suffered a head trauma after falling backward. While working at a height of 85cm above the floor, she fell backward and struck the occipital area of her head on the ground. The patient experienced cognitive dysfunction and depressive mood after the head trauma. DIAGNOSES: The patient was diagnosed as mild TBI due to falling backward. INTERVENTIONS: Clinical evaluation of her brain was performed at 2 months after onset. OUTCOMES: DTT at 2 months after onset revealed narrowings in the right ventrolateral and both orbitofrontal PTTs, whereas both the dorsolateral and left ventrolateral PTTs were not reconstructed. LESSONS: Injuries of the PTTs associated with a contrecoup brain injury were demonstrated in a patient with mild TBI.


Asunto(s)
Lesiones por Contragolpe/complicaciones , Tálamo/lesiones , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones por Contragolpe/fisiopatología , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Persona de Mediana Edad
3.
Front Pharmacol ; 11: 594706, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519458

RESUMEN

Licorice and dried ginger decoction (Gancao-ganjiang-tang, LGD) is used for nausea and anorexia, accompanied by excessive sweating in Traditional Chinese Medicine. Herein, we investigated the therapeutic effects of LGD using the activity-based anorexia (ABA) in a mouse model. Six-week-old female BALB/c AnNCrl mice were orally administered LGD, water, licorice decoction, dried ginger decoction, or chronic olanzapine, and their survival, body weight, food intake, and wheel activity were compared in ABA. Additionally, dopamine concentration in brain tissues was evaluated. LGD significantly reduced the number of ABA mice reaching the drop-out criterion of fatal body weight loss. However, LGD showed no significant effects on food intake and wheel activity. We found that in the LGD group the rise of the light phase activity rate inhibited body weight loss. Licorice or dried ginger alone did not improve survival rates, they only showed longer survival periods than chronic olanzapine when combined. In addition, LGD increased the dopamine concentration in the brain. The results from the present study showed that LGD improves the survival of ABA mice and its mechanism of action might be related to the alteration of dopamine concentration in the brain.

4.
Nanoscale ; 7(39): 16470-80, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26395038

RESUMEN

Magnetic nanoparticle-conjugated polymeric micelles (MNP-PMs) consisting of poly(ethylene glycol)-poly(lactide) (PEG-PLA) and iron oxide nanoparticles were prepared and used as nanocarriers for combined hyperthermia and chemotherapy. Doxorubicin (DOX) was encapsulated in MNP-PMs, and an alternating magnetic field (AMF) resulted in an increase to temperature within a suitable range for inducing hyperthermia and a higher rate of drug release than observed without AMF. In vitro cytotoxicity and hyperthermia experiments were carried out using human lung adenocarcinoma A549 cells. When MNP-PMs encapsulated with an anticancer drug were used to treat A549 cells in combination with hyperthermia under AMF, 78% of the cells were killed by the double effects of heat and the drug, and the combination was more effective than either chemotherapy or hyperthermia treatment alone. Therefore, MNP-PMs encapsulated with an anticancer drug show potential for combined chemotherapy and hyperthermia.


Asunto(s)
Adenocarcinoma/terapia , Hipertermia Inducida , Neoplasias Pulmonares/terapia , Micelas , Nanopartículas/química , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Línea Celular Tumoral , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA