Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Macromol Biosci ; 21(8): e2100088, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34117838

RESUMEN

The aim of the current study is to assess the biological performance of self-healing hydrogels based on calcium phosphate (CaP) nanoparticles and bisphosphonate (BP) conjugated hyaluronan (HA) in a critical size segmental femoral bone defect model in rats. Additionally, these hydrogels are loaded with bone morphogenetic protein 2 (BMP-2) and their performance is compared in healthy and osteoporotic bone conditions. Treatment groups comprise internal plate fixation and placement of a PTFE tube containing hydrogel (HABP -CaP) or hydrogel loaded with BMP-2 in two dosages (HABP -CaP-lowBMP2 or HABP -CaP-highBMP2). Twelve weeks after bone defect surgery, bone formation is analyzed by X-ray examination, micro-CT analysis, and histomorphometry. The data show that critical size, segmental femoral bone defects cannot be healed with HABP -CaP gel alone. Loading of the HABP -CaP gel with low dose BMP-2 significantly improve bone formation and resulted in defect bridging in 100% of the defects. Alternatively, high dose BMP-2 loading of the HABP -CaP gel does not improve bone formation within the defect area, but leads to excessive bone formation outside the defect area. Bone defect healing is not affected by osteoporotic bone conditions.


Asunto(s)
Enfermedades Óseas , Proteína Morfogenética Ósea 2 , Animales , Enfermedades Óseas/tratamiento farmacológico , Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea , Fémur/diagnóstico por imagen , Hidrogeles/farmacología , Nanogeles , Ratas
2.
J Inorg Biochem ; 215: 111334, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33341588

RESUMEN

In the present study we have studied the incorporation and release of selenite ions (SeO32-) in hydroxyapatite nanoparticles for the treatment of bone tumors. Two types of selenium-doped hydroxyapatite (HASe) nanoparticles (NPs) with a nominal Se/(P + Se) molar ratio ranging from 0.01 up to 0.40 have been synthesized by a new and mild wet method. The two series of samples were thoroughly characterized and resulted to be slightly different in chemical composition, but they had similar properties in terms of morphology and degree of crystallinity. Selenium release from HASe was investigated under neutral and acidic conditions to simulate both healthy tissues and the low-pH environment surrounding a tumor mass, respectively. The comparison of the release profiles at two pH values clearly showed the possibility of modulating the Se release by simply changing the amount of Se in the HASe particles. The correlation between the physicochemical properties of HASe and their dissolution as a function of pH has been also investigated to facilitate future application of the NPs as chemotherapeutic adjuvant agents. Finally, the cytotoxic activity of HASe was evaluated using prostate (PC3) and breast (MDA-MB-231) cancer cells as well as healthy human bone marrow stem cells (hBMSc). HASe NPs exerted a good cytocompatibility at low concentration of Se but, with high Se doping concentration, they displayed strong cytotoxicity.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Durapatita/química , Nanopartículas/química , Selenio/química , Antineoplásicos/química , Neoplasias Óseas/metabolismo , Supervivencia Celular/efectos de los fármacos , Durapatita/farmacología , Humanos , Microscopía Electrónica de Transmisión/métodos , Células PC-3 , Selenio/farmacología , Óxidos de Selenio/química , Difracción de Rayos X/métodos
3.
J Mater Chem B ; 8(14): 2792-2804, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32159578

RESUMEN

Chemotherapeutic treatment of patients with bone tumors or bone metastases often leads to severe side effects such as high drug toxicity, lack of tumor specificity and induced drug resistance. A novel strategy to treat early stages of bone metastases involves local co-delivery of multiple chemotherapeutic agents to synergistically improve the curative effect and overcome shortcomings of traditional chemotherapy. Herein we show that selenite-doped hydroxyapatite nanoparticles loaded with a hydroxyapatite-binding anti-tumor platinum complex (PtPP-HASe) selectively reduce proliferation of cancer cells without reducing proliferation of bone marrow stem cells. These PtPP-HASe particles were nanocrystalline with selenium (Se) and platinum (Pt) contents ranging between 0-10 and 1.5-3 wt%, respectively. Release kinetics of Se and Pt from PtPP-HASe nanoparticles resulted in a cumulative release of ∼10 and ∼66 wt% after 7 days, respectively. At a Pt/Se ratio of 8, released Pt and Se species selectively reduced cell number of human prostate (PC3) and human breast cancer cells (MDA-MB-231) by a factor of >10 with limited effects on co-cultured human bone marrow stem cells (hBMSc). These novel nanoparticles demonstrate high anti-cancer selectivity, which offers ample opportunities for the design of novel biomaterials with potent and selective chemotherapeutic efficacy against cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Técnicas de Cocultivo , Nanopartículas/química , Neoplasias de la Próstata/tratamiento farmacológico , Células Madre/efectos de los fármacos , Adsorción , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Durapatita/química , Durapatita/farmacología , Humanos , Cinética , Masculino , Tamaño de la Partícula , Platino (Metal)/química , Platino (Metal)/farmacología , Neoplasias de la Próstata/patología , Selenio/química , Selenio/farmacología , Propiedades de Superficie , Células Tumorales Cultivadas
4.
J Tissue Eng Regen Med ; 9(3): 191-209, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23135814

RESUMEN

Injectable bone substitutes (IBSs) represent an attractive class of ready-to-use biomaterials, both ceramic- and polymer-based, as they offer the potential benefit of minimally invasive surgery and optimal defect filling. Although in vitro assessments are the first step in the process of development, the safety and efficacy of an IBS strongly depend on validated preclinical research prior to clinical trials. However, the selection of a suitable preclinical model for performance evaluation of an IBS remains a challenge, as no gold standard exists to define the best animal model. In order to succeed in this attempt, we identified three stages of development, including (a) proof-of-principle, (b) predictive validity and (c) general scientific legitimacy, and the respective criteria that should be applied for such selection. The second part of this review provides an overview of commonly used animals for IBSs. Specifically, scientific papers published between January 1996 and March 2012 were retrieved that report the use of preclinical models for the evaluation of IBSs in situations requiring bone healing and bone augmentation. This review is meant not only to describe the currently available preclinical models for IBS application, but also to address critical considerations of such multi-factorial evaluation models (including animal species, strain, age, anatomical site, defect size and type of bone), which can be indicative but in most cases edge away from the human reality. Consequently, the ultimate goal is to guide researchers toward a more careful and meaningful interpretation of the results of experiments using animal models and their clinical applications.


Asunto(s)
Enfermedades Óseas/terapia , Sustitutos de Huesos/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Animales , Sustitutos de Huesos/efectos adversos , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Humanos
5.
PLoS One ; 8(8): e72610, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977328

RESUMEN

The design of bioactive three-dimensional (3D) scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2) influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs) was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs) and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.


Asunto(s)
Alginatos/farmacología , Bioimpresión/métodos , Proteína Morfogenética Ósea 2/metabolismo , Osteogénesis , Animales , Diferenciación Celular/efectos de los fármacos , Preparaciones de Acción Retardada , Femenino , Gelatina/farmacología , Ácido Glucurónico/farmacología , Cabras , Ácidos Hexurónicos/farmacología , Humanos , Hidroxiapatitas/farmacología , Ratones Desnudos , Microesferas , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Células Madre Multipotentes/metabolismo , Osteocalcina/metabolismo , Osteogénesis/efectos de los fármacos , Ratas Wistar , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Tejido Subcutáneo/metabolismo , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA