Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Cell Neurosci ; 17: 1125412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051111

RESUMEN

2,3,5,6-Tetramethylpyrazine (TMP) as an active ingredient extracted from a traditional Chinese herbal medicine Ligusticum chuanxiong Hort. has been proved to penetrate blood-brain barrier (BBB) and show neuroprotective effects on cerebral ischemia. However, whether TMP could regulate astrocytic reactivity to facilitate neurovascular restoration in the subacute ischemic stroke needs to be urgently verified. In this research, permanent occlusion of the middle cerebral artery (MCAO) model was conducted and TMP (10, 20, 40 mg/kg) was intraperitoneally administrated to rats once daily for 2 weeks. Neurological function was evaluated by motor deficit score (MDS). Magnetic resonance imaging (MRI) was implemented to analyze tissue injury and cerebral blood flow (CBF). Magnetic resonance angiography (MRA) was applied to exhibit vascular signals. Transmission electron microscopy (TEM) was performed to detect the neurovascular unit (NVU) ultrastructure. Haematoxylin and eosin (HE) staining was utilized to evaluate cerebral histopathological lesions. The neurogenesis, angiogenesis, A1/A2 reactivity, aquaporin 4 (AQP4) and connexin 43 (Cx43) of astrocytes were observed with immunofluorescent staining. Then FGF2/PI3K/AKT signals were measured by western blot. Findings revealed TMP ameliorated neurological functional recovery, preserved NVU integrity, and enhanced endogenous neurogenesis and angiogenesis of rats with subacute ischemia. Shifting A1 to A2 reactivity, suppressing excessive AQP4 and Cx43 expression of astrocytes, and activating FGF2/PI3K/AKT pathway might be potential mechanisms of promoting neurovascular restoration with TMP after ischemic stroke.

2.
Front Pharmacol ; 12: 763181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955834

RESUMEN

Trillium tschonoskii Maxim. (TTM), is a perennial herb from Liliaceae, that has been widely used as a traditional Chinese medicine treating cephalgia and traumatic hemorrhage. The present work was designed to investigate whether the total saponins from Trillium tschonoskii Maxim. (TSTT) would promote brain remodeling and improve gait impairment in the chronic phase of ischemic stroke. A focal ischemic model of male Sprague-Dawley (SD) rats was established by permanent middle cerebral artery occlusion (MCAO). Six hours later, rats were intragastrically treated with TSTT (120, 60, and 30 mg/kg) and once daily up to day 30. The gait changes were assessed by the CatWalk-automated gait analysis system. The brain tissues injuries, cerebral perfusion and changes of axonal microstructures were detected by multimodal magnetic resonance imaging (MRI), followed by histological examinations. The axonal regeneration related signaling pathways including phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3 (GSK-3)/collapsin response mediator protein-2 (CRMP-2) were measured by western blotting. TSTT treatment significantly improved gait impairment of rats. MRI analysis revealed that TSTT alleviated tissues injuries, significantly improved cerebral blood flow (CBF), enhanced microstructural integrity of axon and myelin sheath in the ipsilesional sensorimotor cortex and internal capsule. In parallel to MRI findings, TSTT preserved myelinated axons and promoted oligodendrogenesis. Specifically, TSTT interventions markedly up-regulated expression of phosphorylated GSK-3, accompanied by increased expression of phosphorylated PI3K, AKT, but reduced phosphorylated CRMP-2 expression. Taken together, our results suggested that TSTT facilitated brain remodeling. This correlated with improving CBF, encouraging reorganization of axonal microstructure, promoting oligodendrogenesis and activating PI3K/AKT/GSK-3/CRMP-2 signaling, thereby improving poststroke gait impairments.

3.
J Ethnopharmacol ; 279: 114358, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34166736

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Trillium tschonoskii Maxim. is one of traditional Chinese medical herbs that has been utilized to treat brain damages and cephalalgia. The neuroprotective effect of total saponins from Trillium tschonoskii rhizome (TSTT) has been demonstrated efficacy in rats following ischemia. However, the axonal remodeling effect of TSTT and the detailed mechanisms after ischemic stroke have not been investigated. AIM OF THE STUDY: We aimed to estimate therapeutic role of TSTT in axonal remodeling using magnetic resonance imaging (MRI) technique, and explored possible mechanisms underlying this process followed by histological assays in ischemic rats. METHODS: Male Sprague-Dawley (SD) rats underwent permanently focal cerebral ischemia induced by occluding right permanent middle cerebral artery. TSTT was intragastrically administrated 6 h after surgery and once daily for consecutive 15 days. Neurological function was assessed by the motor deficit score and beam walking test. T2 relaxation mapping and diffusion tensor imaging (DTI) were applied for detecting cerebral tissues damages and microstructural integrity of axons. Luxol fast blue (LFB) and transmission electron microscope (TEM) were performed to evaluate histopathology in myelinated axons. Double immunofluorescent staining was conducted to assess oligodendrogenesis. Furthermore, the protein expressions regarding to axonal remodeling related signaling pathways were detected by Western blot assays. RESULTS: TSTT treatment (65, 33 mg/kg) markedly improved motor function after ischemic stroke. T2 mapping MRI demonstrated that TSTT decreased lesion volumes, and DTI further confirmed that TSTT preserved axonal microstructure of the sensorimotor cortex and internal capsule. Meanwhile, diffusion tensor tractography (DTT) showed that TSTT elevated correspondent density and length of fiber in the internal capsule. These MRI measurements were confirmed by histological examinations. Notably, TSTT significantly increased Ki67/NG2, Ki67/CNPase double-labeled cells along the boundary zone of ischemic cortex and striatum. Meanwhile, TSTT treatment up-regulated the phosphorylation level of Ser 9 in GSK-3ß, and down-regulated phosphorylated ß-catenin and CRMP-2 expression. CONCLUSION: Taken together, our findings indicated that TSTT (65, 33 mg/kg) enhanced post-stroke functional recovery, amplified endogenous oligodendrogenesis and promoted axonal regeneration. The beneficial role of TSTT might be correlated with GSK-3/ß-catenin/CRMP-2 modulating axonal reorganization after ischemic stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Saponinas/farmacología , Trillium/química , Animales , Axones/patología , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Accidente Cerebrovascular Isquémico/fisiopatología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Rizoma , Saponinas/administración & dosificación , Saponinas/aislamiento & purificación , beta Catenina/metabolismo
4.
Biomed Pharmacother ; 103: 989-1001, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29710516

RESUMEN

EGb 761 is a standardized natural extract from Ginkgo biloba leaf that has shown neuroprotective effects after ischemic stroke. This study aimed to use magnetic resonance imaging (MRI) to noninvasively evaluate whether EGb 761 promotes neurovascular restoration and axonal remodeling in a rat model of focal cerebral ischemia. Male Sprague-Dawley rats were subjected to permanent right middle cerebral artery occlusion (MCAO) and treated with EGb 761 (60 mg/kg) or saline intragastrically once daily for 15 days starting 6 h after MCAO. Functional recovery was analyzed using beam walking test. Multi-parametric MRI was applied to examine the alterations of gray-white structures, intracranial vessels, cerebral perfusion and axonal integrity, and followed with histological studies. Furthermore, the protein expression of axonal remodeling related signaling pathways including protein kinase B (AKT)/ glycogen synthase kinase-3ß (GSK-3ß)/ collapsin response mediator protein 2 (CRMP2) and NogoA/NgR were detected by Western blotting analysis. Multi-parametric MRI demonstrated that EGb 761 significantly reduced infarct volume, alleviated gray and white matter damage, and enhanced collateral circulation, cerebral perfusion and axonal remodeling. Histological examinations supported the MRI results. EGb 761 treatment facilitated behavioral recovery and amplified endogenous neurogenesis. Notably, treatment with EGb 761 significantly increased the levels of p-AKT, p-GSK-3ß and decreased the expression of p-CRMP2. In addition, EGb 761 treatment up-regulated the expression of growth associated protein 43 (GAP-43) and suppressed the activation of axonal growth inhibitory molecules NogoA and NgR. These findings indicated that EGb 761 enhanced neurovascular restoration, amplified endogenous neurogenesis and promoted axonal regeneration, which in concert may contribute to gray-white matter reorganization and functional outcome after stroke.


Asunto(s)
Axones/ultraestructura , Encéfalo/diagnóstico por imagen , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/ultraestructura , Circulación Cerebrovascular/efectos de los fármacos , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Ginkgo biloba , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Masculino , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/uso terapéutico , Ratas Sprague-Dawley , Accidente Cerebrovascular/tratamiento farmacológico
5.
Sci Rep ; 8(1): 7449, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29748641

RESUMEN

Chronic cerebral hypoperfusion (CCH) is identified as a critical risk factor of dementia in patients with cerebrovascular disease. Xiaoshuan enteric-coated capsule (XSECC) is a compound Chinese medicine approved by Chinese State Food and Drug Administration for promoting brain remodeling and plasticity after stroke. The present study aimed to explore the potential of XSECC to improve cognitive function after CCH and further investigate the underlying mechanisms. CCH was induced by bilateral common carotid artery occlusion (BCCAO) in rats. XSECC (420 or 140 mg/kg) treatment remarkably reversed BCCAO-induced cognitive deficits. Notably, after XSECC treatment, magnetic resonance angiography combined with arterial spin labeling noninvasively demonstrated significantly improved hippocampal hemodynamics, and 18F-FDG PET/CT showed enhanced hippocampal glucose metabolism. In addition, XSECC treatment markedly alleviated neuropathologies and improved neuroplasticity in the hippocampus. More importantly, XSECC treatment facilitated axonal remodeling by regulating the phosphorylation of axonal growth related proteins including protein kinase B (AKT), glycogen synthase kinase-3ß (GSK-3ß) and collapsin response mediator protein-2 (CRMP2) in the hippocampus. Taken together, the present study demonstrated the beneficial role of XSECC in alleviating BCCAO-induced cognitive deficits by enhancing hippocampal glucose metabolism, hemodynamics and neuroplasticity, suggesting that XSECC could be a useful strategy in cerebral hypoperfusion state and dementia.


Asunto(s)
Circulación Cerebrovascular/efectos de los fármacos , Trastornos Cerebrovasculares/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Glucosa/metabolismo , Hemodinámica/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Animales , Trastornos Cerebrovasculares/complicaciones , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/fisiopatología , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Medicamentos Herbarios Chinos/administración & dosificación , Hipocampo/irrigación sanguínea , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Memoria/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Comprimidos Recubiertos
6.
J Ethnopharmacol ; 217: 36-48, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29428242

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bu Shen Yi Sui capsule (BSYSC), based on traditional Chinese formula Liu Wei Di Huang pill, is effective for the treatment of multiple sclerosis (MS) in clinical experience and trials. Our previous studies confirmed that BSYSC had the neuroprotective effect in MS and its animal model, experimental autoimmune encephalomyelitis (EAE); however, its mechanism of action was not clear. Thus, the effect of BSYSC on remyelination and the underlying mechanisms were investigated in the EAE mice. MATERIALS AND METHODS: The EAE model was established by injecting subcutaneously myelin oligodendrocyte protein (MOG) 35-55 in mice. Mice were treated with BSYSC (3.02 g/kg) or vehicle daily by oral gavage for 40 days. The body weight and clinical score of mice were evaluated. Brain was observed by magnetic resonance imaging. The inflammation infiltrate of brain and spinal cord was determined by hematoxylin-eosin staining, while the structure of myelin sheath was visualized by transmission electron microscopy on days 23 and 40 post immunization (dpi), respectively. The protein and mRNA levels of platelets-derived growth factor receptor (PDGFR) α and 2', 3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) were measured by immunohistochemistry, western blot and quantitative real-time polymerase chain reaction. The protein expressions of semaphorins (Sema) 3A, Neuropilin (NRP) - 1, leukemia inhibitory factor (LIF), LIF receptor (LIFR) and Nkx6.2 were further investigated by western blot. RESULTS: BSYSC treatment improved the body weight and clinical score of EAE mice, alleviated inflammatory infiltration and nerve fiber injuries. It also protected the ultrastructural integrity of myelin sheath. BSYSC significantly increased expressions of PDGFRα and CNPase in mice with EAE on 40 dpi. Furthermore, BSYSC treatment increased the expressions of LIF, LIFR and Nkx6.2 and reduced Sema3A and NRP-1 in EAE mice on 40 dpi. CONCLUSIONS: The data demonstrated that BSYSC exhibited the neuroprotective effect against EAE by promoting oligodendrocyte progenitor cells (OPCs) proliferation and differentiation, thus facilitating remyelination. Sema3A/NRP-1, LIF/LIFR and Nkx6.2 are likely contributed to the effects of BSYSC on OPCs.


Asunto(s)
Encéfalo/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Proteínas de Homeodominio/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Vaina de Mielina/efectos de los fármacos , Neuropilina-1/metabolismo , Fármacos Neuroprotectores/farmacología , Semaforina-3A/metabolismo , Médula Espinal/efectos de los fármacos , Factores de Transcripción/metabolismo , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Administración Oral , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Cápsulas , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Glicoproteína Mielina-Oligodendrócito , Fármacos Neuroprotectores/administración & dosificación , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Fragmentos de Péptidos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/ultraestructura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA