Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Integr Plant Biol ; 64(12): 2314-2326, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35972795

RESUMEN

Plasticity in root system architecture (RSA) allows plants to adapt to changing nutritional status in the soil. Phosphorus availability is a major determinant of crop yield, and RSA remodeling is critical to increasing the efficiency of phosphorus acquisition. Although substantial progress has been made in understanding the signaling mechanism driving phosphate starvation responses in plants, whether and how epigenetic regulatory mechanisms contribute is poorly understood. Here, we report that the Switch defective/sucrose non-fermentable (SWI/SNF) ATPase BRAHMA (BRM) is involved in the local response to phosphate (Pi) starvation. The loss of BRM function induces iron (Fe) accumulation through increased LOW PHOSPHATE ROOT1 (LPR1) and LPR2 expression, reducing primary root length under Pi deficiency. We also demonstrate that BRM recruits the histone deacetylase (HDA) complex HDA6-HDC1 to facilitate histone H3 deacetylation at LPR loci, thereby negatively regulating local Pi deficiency responses. BRM is degraded under Pi deficiency conditions through the 26 S proteasome pathway, leading to increased histone H3 acetylation at the LPR loci. Collectively, our data suggest that the chromatin remodeler BRM, in concert with HDA6, negatively regulates Fe-dependent local Pi starvation responses by transcriptionally repressing the RSA-related genes LPR1 and LPR2 in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Fosfatos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fósforo/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(1): 527-32, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24248388

RESUMEN

DNA methylation is important for the silencing of transposons and other repetitive elements in many higher eukaryotes. However, plant and mammalian genomes have evolved to contain repetitive elements near or inside their genes. How these genes are kept from being silenced by DNA methylation is not well understood. A forward genetics screen led to the identification of the putative chromatin regulator Enhanced Downy Mildew 2 (EDM2) as a cellular antisilencing factor and regulator of genome DNA methylation patterns. EDM2 contains a composite Plant Homeo Domain that recognizes both active and repressive histone methylation marks at the intronic repeat elements in genes such as the Histone 3 lysine 9 demethylase gene Increase in BONSAI Methylation 1 (IBM1) and is necessary for maintaining the expression of these genes by promoting mRNA distal polyadenylation. Because of its role in maintaining IBM1 expression, EDM2 is required for preventing CHG methylation in the bodies of thousands of genes. Our results thus increase the understanding of antisilencing, genome methylation patterns, and regulation of alternative RNA processing by intronic heterochromatin.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Histona Demetilasas con Dominio de Jumonji/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Secuencia de Bases , Cartilla de ADN/genética , ADN Complementario/metabolismo , ADN de Plantas/genética , Metanosulfonato de Etilo/química , Silenciador del Gen , Genoma de Planta , Heterocromatina/metabolismo , Histonas/química , Modelos Genéticos , Datos de Secuencia Molecular , Péptidos/química , Poliadenilación , ARN Mensajero/metabolismo , Sulfitos/química , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA