Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hortic Res ; 10(6): uhad073, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37303613

RESUMEN

An ancient hexaploidization event in the most but not all Asteraceae plants, may have been responsible for shaping the genomes of many horticultural, ornamental, and medicinal plants that promoting the prosperity of the largest angiosperm family on the earth. However, the duplication process of this hexaploidy, as well as the genomic and phenotypic diversity of extant Asteraceae plants caused by paleogenome reorganization, are still poorly understood. We analyzed 11 genomes from 10 genera in Asteraceae, and redated the Asteraceae common hexaploidization (ACH) event ~70.7-78.6 million years ago (Mya) and the Asteroideae specific tetraploidization (AST) event ~41.6-46.2 Mya. Moreover, we identified the genomic homologies generated from the ACH, AST and speciation events, and constructed a multiple genome alignment framework for Asteraceae. Subsequently, we revealed biased fractionations between the paleopolyploidization produced subgenomes, suggesting the ACH and AST both are allopolyplodization events. Interestingly, the paleochromosome reshuffling traces provided clear evidence for the two-step duplications of ACH event in Asteraceae. Furthermore, we reconstructed ancestral Asteraceae karyotype (AAK) that has 9 paleochromosomes, and revealed a highly flexible reshuffling of Asteraceae paleogenome. Of specific significance, we explored the genetic diversity of Heat Shock Transcription Factors (Hsfs) associated with recursive whole-genome polyploidizations, gene duplications, and paleogenome reshuffling, and revealed that the expansion of Hsfs gene families enable heat shock plasticity during the genome evolution of Asteraceae. Our study provides insights on polyploidy and paleogenome remodeling for the successful establishment of Asteraceae, and is helpful for further communication and exploration of the diversification of plant families and phenotypes.

2.
Plant Biotechnol J ; 18(6): 1444-1456, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31799788

RESUMEN

Coriander (Coriandrum sativum L. 2n = 2x = 22), a plant from the Apiaceae family, also called cilantro or Chinese parsley, is a globally important crop used as vegetable, spice, fragrance and traditional medicine. Here, we report a high-quality assembly and analysis of its genome sequence, anchored to 11 chromosomes, with total length of 2118.68 Mb and N50 scaffold length of 160.99 Mb. We found that two whole-genome duplication events, respectively, dated to ~45-52 and ~54-61 million years ago, were shared by the Apiaceae family after their split from lettuce. Unbalanced gene loss and expression are observed between duplicated copies produced by these two events. Gene retention, expression, metabolomics and comparative genomic analyses of terpene synthase (TPS) gene family, involved in terpenoid biosynthesis pathway contributing to coriander's special flavour, revealed that tandem duplication contributed to coriander TPS gene family expansion, especially compared to their carrot counterparts. Notably, a TPS gene highly expressed in all 4 tissues and 3 development stages studied is likely a major-effect gene encoding linalool synthase and myrcene synthase. The present genome sequencing, transcriptome, metabolome and comparative genomic efforts provide valuable insights into the genome evolution and spice trait biology of Apiaceae and other related plants, and facilitated further research into important gene functions and crop improvement.


Asunto(s)
Coriandrum , Mapeo Cromosómico , Emociones , Genoma de Planta , Plantas , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA