Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mech Ageing Dev ; 211: 111779, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36731753

RESUMEN

Vitiligo is a chronic autoimmune disease characterized by the T helper 1 (Th1) cytokine-driven immune destruction of melanocytes (MCs). Although narrowband ultraviolet B (NBUVB) phototherapy has been proven to be an effective therapeutic option, the repigmentation response to that phototherapy varies greatly in different vitiligo patients. Here, we demonstrate that there is an increase of NBUVB-induced cellular senescence in vitiligo MCs exposed to Th1 cytokine interferon γ (IFNγ) and/or tumor necrosis factor α (TNFα) in lesional vitiligo skin from poor responders who had undergone NBUVB phototherapy. Supplementation with exogenous recombinant human stem cell factor (rhSCF) in the culture medium as well as the lentiviral vector-mediated overexpression of cKIT could prevent the MCs from the IFNγ/TNFα-accelerated cellular senescence. Mechanistic studies indicated that the reduced ratio of membrane-bound KIT (mKIT) to the soluble form of KIT (sKIT) is directly related to the cellular senescence of vitiligo MCs following exposure to IFNγ and TNFα. Furthermore, the matrix metalloprotease 9 (MMP9) inhibitor GM6001 attenuates the production of sKIT via the suppression of cKIT ectodomain shedding. Altogether, our study indicates that the presence of Th1 cytokines IFNγ and/or TNFα in the epidermal milieu might impair the repigmentation response of vitiligo patients to NBUVB phototherapy.


Asunto(s)
Vitíligo , Humanos , Vitíligo/radioterapia , Vitíligo/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Citocinas , Interferón gamma , Fototerapia , Melanocitos/patología , Resultado del Tratamiento , Aceleración
2.
Chin Med J (Engl) ; 133(10): 1231-1238, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433056

RESUMEN

Current treatment of vitiligo is still a great challenge, since most cases of vitiligo have variable re-pigmentation outcomes due to their unpredictable responses to existing therapeutic regimens. There is an urgent need to identify this re-pigmentation process and to develop novel therapies. This review illustrates the most current research and latest understanding of vitiligo skin re-pigmentation and related regulatory mechanisms. Literature was collected from PubMed until January 2020, using the search terms including "vitiligo," "re-pigmentation," "phototherapy," "narrow-band ultraviolet B, " "excimer," "fractional carbon dioxide laser," and "melanocyte stem cells." Literature was mainly derived from English articles. Article type was not limited. Emerging evidence suggests that patients with vitiligo present various re-pigmentation patterns following ultraviolet B phototherapy, which relies on different cell reservoirs from the perilesional margins and/or from uninvolved hair follicles to replenish functional melanocytes that are lost in vitiliginous skin. The following events are likely to be involved in this re-pigmentation process, including: 1) changes in the paracrine secretion and distribution of transforming growth factor-ß1 in the bulge area and in the epidermis; 2) the enhanced transfer of dermal pro-melanogenic growth factors to the epidermis; and 3) the induction of a C-X-C motif chemokine ligand (CXCL) 12-enriched micro-environment that efficiently recruits CXCR4- or CXCR7-positive melanocytes. Ongoing studies on the cellular and molecular events underlying vitiligo re-pigmentation will help design new therapeutic strategies to improve treatment outcomes.


Asunto(s)
Vitíligo , Epidermis , Folículo Piloso , Humanos , Melanocitos , Pigmentación de la Piel
3.
Int J Mol Med ; 45(4): 1017-1026, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31985026

RESUMEN

Clinical studies have proven that ultraviolet B (UVB) based phototherapy can induce perifollicular and marginal repigmentation patterns in the skin of vitiligo patients. It is, however, difficult to conceive how melanocytes can easily exit from their tightly interconnected epidermal microenvironment to re­enter a different location in the skin to establish a new network with neighboring keratinocytes. While it is known that matrix metalloprotease 9 (MMP9) is involved in the degradation of the extracellular matrix in physiological or pathological processes, little is known about whether MMP9 affects melanocyte migration in vitiligo repigmentation. To investigate the effects of the p53­ transient receptor potential cation channel subfamily M member 1 (TRPM1)/microRNA (miR/miRNA)­211­MMP9 axis to regulate melanocyte migration following exposure to UVB, the expression profile of MMP9 in cultured human melanocytes transfected with or without the miR­211­mimic and p53­GFP lentiviral vector, respectively were determined. Quantitative polymerase chain reaction and western blotting were used to examine p53, TRPM1 and MMP9 mRNA and protein levels in UVB­exposed and unexposed cells. The capacity of melanocytes to migrate on collagen IV substrate was estimated using a Transwell migration assay. Interestingly, the upregulation of p53 and MMP9 at the mRNA and protein levels was evident in melanocytes treated with single or repeat exposures to UVB, whereas levels of TRPM1 and miR­211 were significantly suppressed in UVB­exposed melanocytes compared with the UVB­unexposed control cells. These results indicate that the p53­TRPM1/miR­211­MMP9 axis is significantly activated in melanocytes exposed to UVB. Notably, the ability of melanocyte migration was altered by the overexpression of p53 using a lentiviral vector and by the upregulation of miR­211 using an miRNA mimic. That altered migration could be neutralized by co­treatment with GM6001 (a broad­spectrum MMP inhibitor). Overall, these results show that the MMP9­mediated migration of melanocytes is regulated by a novel mechanism driven by the p53­TRPM1/miR­211­MMP9 axis. Activation of the p53­TRPM1/miR­211­MMP9 axis potentially represents an attractive therapeutic target to improve repigmentation outcomes in vitiligo patients.


Asunto(s)
Metaloproteinasa 9 de la Matriz/metabolismo , Melanocitos/metabolismo , Melanocitos/efectos de la radiación , MicroARNs/metabolismo , Canales Catiónicos TRPM/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta , Adolescente , Adulto , Western Blotting , Movimiento Celular/efectos de la radiación , Células Cultivadas , Humanos , Adulto Joven
4.
Int J Mol Med ; 41(4): 2079-2085, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29336472

RESUMEN

Baicalin is a traditional Chinese herbal medicine commonly used for hair loss, the precise molecular mechanism of which is unknown. In the present study, the mechanism of baicalin was investigated via the topical application of baicalin to reconstituted hair follicles on mice dorsa and evaluating the effect on canonical Wnt/ß­catenin signaling in the hair follicles and the activity of dermal papillar cells. The results indicate that baicalin stimulates the expression of Wnt3a, Wnt5a, frizzled 7 and disheveled 2 whilst inhibiting the Axin/casein kinase 1α/adenomatous polyposis coli/glycogen synthase kinase 3ß degradation complex, leading to accumulation of ß­catenin and activation of Wnt/ß­catenin signaling. In addition, baicalin was observed to increase the alkaline phosphatase levels in dermal papillar cells, a process which was dependent on Wnt pathway activation. Given its non­toxicity and ease of topical application, baicalin represents a promising treatment for alopecia and other forms of hair loss. Further studies of baicalin using human hair follicle transplants are warranted in preparation for future clinical use.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Folículo Piloso/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Alopecia/tratamiento farmacológico , Alopecia/metabolismo , Animales , Células Cultivadas , Femenino , Folículo Piloso/citología , Folículo Piloso/metabolismo , Folículo Piloso/ultraestructura , Ratones , Ratones Endogámicos BALB C , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
5.
Pigment Cell Res ; 15(6): 426-32, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12453184

RESUMEN

It is known that the migration of melanocyte precursors (melanoblasts) from the outer root sheath of hair follicles into clinically depigmented epidermis is crucial to the repigmentation of vitiliginous skin treated with photochemotherapy (PUVA), but such migratory cells must penetrate extracellular matrix tissue barriers in vivo. To test the hypothesis that matrix metalloproteinases (MMPs) are required for this process, we determined whether cultured melb-a cells, an immortal line of melanoblasts isolated from neonatal mouse epidermis, express and secrete MMPs and whether a synthetic metalloproteinase inhibitor, GM6001 (Galardin), inhibits their migratory behavior in vitro. Reverse transcriptase-polymerase chain reaction and Western blotting were used to determine the patterns of MMP expression by melanoblasts at the mRNA and protein levels, respectively. The proteolytic activities of MMPs secreted into the culture medium were assessed by gelatin zymography. The capacity of melanoblasts to migrate on fibronectin, laminin or laminin-5 substrates was estimated using Transwell migration assays. The results show that MMP2, MMP9 and MT1-MMP transcripts are expressed by these melanoblasts, but only MMP2 is secreted and activated in the extracellular environment. Although the therapeutic efficacy of PUVA in stimulating repigmentation of vitiliginous skin might derive from direct effects of UVA and/or 8-methoxypsoralen (8MOP), recent studies have shown that keratinocyte-derived factors induced by ultraviolet radiation, especially alpha-melanocyte stimulating hormone (alpha MSH), play a major role in regulating melanocyte function. Therefore, we also examined whether 8MOP and/or alphaMSH are involved in the up-regulation of MMP2 expression in melanoblasts. Western blotting and zymographic analyses revealed that MMP2 synthesis and secretion were induced by 8MOP and/or by alpha MSH. This induction of MMP2 resulted in significant increases of migration by melanoblasts on laminin or on laminin-5 substrates, while concomitant treatment with GM6001 blocked that induced migration. Taken together, these results suggest the importance of MMP2 in melanoblast migration and in the response to PUVA therapy.


Asunto(s)
Movimiento Celular/fisiología , Metaloproteinasa 2 de la Matriz/metabolismo , Melanocitos/citología , Melanocitos/enzimología , Terapia PUVA , Vitíligo/tratamiento farmacológico , Animales , Moléculas de Adhesión Celular/farmacología , Células Cultivadas , Dipéptidos/farmacología , Inducción Enzimática/efectos de los fármacos , Técnicas In Vitro , Laminina/farmacología , Metaloproteinasa 2 de la Matriz/genética , Metoxaleno/farmacología , Ratones , Ratones Endogámicos C57BL , Inhibidores de Proteasas/farmacología , Vitíligo/patología , alfa-MSH/farmacología , Kalinina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA