Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mar Pollut Bull ; 192: 115100, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37276711

RESUMEN

Oil spills pose significant environmental risks, particularly in cold seas. In the Baltic Sea, the low salinity (from 0 to 2 up to 18) affects the behaviour of the spilled oil as well as the efficiency and ecological impacts of oil spill response methods such as mechanical collection and the use of dispersants. In the present study, mussels (Mytilus trossulus) were exposed under winter conditions (5 °C) to the water-accommodated fraction (WAF) of Naphthenic North Atlantic crude oil prepared by mechanical dispersion or to the chemically enhanced fraction (CEWAF) obtained using the dispersant Finasol OSR 51 at salinities of 5.6 and 15.0. Especially at the lower salinity, high bioaccumulation of polycyclic aromatic hydrocarbons was recorded in mussels in the CEWAF treatments, accompanied by increased biomarker responses. In the WAF treatments these impacts were less evident. Thus, the use of dispersants in the Baltic Sea still needs to be carefully considered.


Asunto(s)
Mytilus , Petróleo , Animales , Agua , Salinidad , Océanos y Mares , Biomarcadores
2.
Mar Pollut Bull ; 189: 114786, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36893648

RESUMEN

This investigation deals with how temperature influences oil toxicity, alone or combined with dispersant (D). Larval lengthening, abnormalities, developmental disruption, and genotoxicity were determined in sea urchin embryos for assessing toxicity of low-energy water accommodated fractions (LEWAF) of three oils (NNA crude oil, marine gas oil -MGO-, and IFO 180 fuel oil) produced at 5-25 °C. PAH levels were similar amongst LEWAFs but PAH profiles varied with oil and production temperature. The sum of PAHs was higher in oil-dispersant LEWAFs than in oil LEWAFs, most remarkably at low production temperatures in the cases of NNA and MGO. Genotoxicity, enhanced after dispersant application, varied depending on the LEWAF production temperature in a different way for each oil. Impaired lengthening, abnormalities and developmental disruption were recorded, the severity of the effects varying with oil, dispersant application and LEWAF production temperature. Toxicity, only partially attributed to individual PAHs, was higher at lower LEWAF production temperatures.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Temperatura , Óxido de Magnesio , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Aceites , Petróleo/toxicidad , Alimentos Marinos , Erizos de Mar , Hidrocarburos Policíclicos Aromáticos/toxicidad , Agua
3.
Mar Pollut Bull ; 175: 113345, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35151077

RESUMEN

A multi-index approach (larval lenghthening and malformations, developmental disruption, and genotoxicity) was applied using sea-urchin embryos as test-organisms. PAH levels measured in the under-ice weathered aqueous fraction (UIWAF) were lower than in the low-energy water accommodated fraction (LEWAF) and similar amongst UIWAFs of different oils. UIWAFs and LEWAFs caused toxic effects, more markedly in UIWAFs, that could not be attributed to measured individual PAHs or to their mixture. Conversely, UIWAF was less genotoxic than LEWAF, most likely because naphthalene concentrations were also lower. In agreement, NAN LEWAF, the most genotoxic, exhibited the highest naphthalene levels. Dispersant addition produced less consistent changes in PAH levels and embryo toxicity in UIWAFs than in LEWAFs, and did not modify LEWAF genotoxicity. Overall, under ice weathering resulted in lowered waterborne PAHs and genotoxicity but augmented embryo toxicity, not modified by dispersant application.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Hielo , Aceites , Petróleo/toxicidad , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Erizos de Mar , Contaminantes Químicos del Agua/toxicidad
4.
Mar Pollut Bull ; 172: 112922, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34523425

RESUMEN

This study deals with the toxicity assessment of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic seas (NNA: Naphthenic North-Atlantic crude oil; MGO: Marine Gas Oil; IFO: Intermediate Fuel Oil 180), alone or in combination with a third-generation dispersant (Finasol OSR52®). Early life stages of sea urchin, Paracentrotus lividus, were selected for toxicity testing of oil low-energy water accommodated fractions. A multi-index approach, including larval size increase and malformation, and developmental disruption as endpoints, was sensitive to discriminate from slight to severe toxicity caused by the tested aqueous fractions. IFO (heavy bunker oil) was more toxic than NNA (light crude oil), with MGO (light bunker oil) in between. The dispersant was toxic and further on it enhanced oil toxicity. Toxic units revealed that identified PAHs were not the main cause for toxicity, most likely exerted by individual or combined toxic action of non-measured compounds.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Aceites , Petróleo/toxicidad , Estudios Prospectivos , Erizos de Mar , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA