Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 82(18): 1009-1018, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31658881

RESUMEN

The use of natural products from herbs may be a therapeutic option in dyslipidemia treatment. Campomanesia xanthocarpa (Mart.) O. Berg (Myrtaceae) leaves have been used to decrease cholesterol levels. However, studies to determine activities of this plant on triglycerides metabolism have received little attention. The aim of this study was to examine anti-hyperlipidemic effects of a C. xanthocarpa aqueous leaf extract (CxAE) and assess protective actions against oxidative stress and DNA damage. The tyloxapol-induced hyperlipidemia model was used in Wistar rats. Rats were treated orally with CxAE either 250 or 500 mg/kg/day for 7 days prior to tyloxapol administration. Biochemical parameters, oxidative stress levels, and genomic instability were assessed in several tissues. CxAE decreased cholesterol and triglyceride levels in serum and hepatic and renal DNA damage in tyloxapol-treated rats. There was no marked effect on the micronucleus frequency in bone marrow. The extract increased catalase activity and decreased glutathione S-transferase activity in kidney tissue. CxAE showed anti-hyperlipidemic effects, improved oxidative parameters, and protected DNA against damage induced by tyloxapol-induced hyperlipidemia, suggesting C. xanthocarpa leaves may be useful in preventing dyslipidemias.Abbreviations: ALP: Alkaline phosphatase; ALT: Aspartate aminotransferase; ANOVA: Analysis of variance; AST: Aspartate aminotransferase; Ator: Atorvastatin; CAT: Catalase; Chol: Cholesterol; CxAE: Campomanesia xanthocarpa aqueous extract; GST: Glutathione S-transferase; HDL: High density cholesterol; i.p.: Intraperitoneal; NCE: Normochromatic erythrocyte; PBS: Phosphate buffer solution; PCE: Polychromatic erythrocyte; ROS: Reactive oxygen species; SD: Standard deviation; SOD: Superoxide dismutase; T: Tyloxapol; TBARS: Thiobarbituric acid reacting substances; TG: Triglyceride.


Asunto(s)
Daño del ADN/efectos de los fármacos , Hiperlipidemias/tratamiento farmacológico , Hipolipemiantes/uso terapéutico , Myrtaceae/química , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/toxicidad , Extractos Vegetales/uso terapéutico , Animales , Hojas de la Planta/química , Ratas , Ratas Wistar
2.
J Toxicol Environ Health A ; 82(1): 62-74, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30741125

RESUMEN

Campomanesia xanthocarpa leaves are used as tea to treat diarrhea, inflammation, and hypercholesterolemia. Some pharmacological studies noted its beneficial uses of C. xanthocarpa; however, few investigations examined the toxicological profile of this plant. The aim of this study was to determine the chemical composition, genotoxic, and mutagenic potential of an aqueous extract of C. xanthocarpa leaves (CxAE), and potential protective effects against oxidative damage. Phytochemical constituents were determined using HPLC, and antioxidant effect in vitro was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. Genotoxic effects and chromosomic mutations were assessed using comet assay and micronucleus (MN) test in Wistar rats treated with CxAE at 250, 500 or 1000 mg/kg for 7 consecutive days. Lipid peroxidation and antioxidant enzyme activities were measured in several tissues. CxAE induced mutations in TA98, TA97a, and TA102 strains. However, in the presence of metabolic activation, data were negative for all strains tested. Lack of mutagenicity was also observed in the MN test. This extract did not induce DNA damage, except when the highest concentration was used. DNA oxidative damage induced by hydrogen peroxide (H2O2) decreased in blood after treatment with CxAE. Lipid peroxidation levels were reduced while superoxide dismutase (SOD) activity increased in kidneys. The inhibitory concentration of CxAE required to lower DPPH levels to 50% was 38.47 ± 2.06 µg/ml. In conclusion, frameshift and oxidative mutations were observed only in the absence of metabolic activation which may be attributed to the presence of flavonoids such as quercetin. It is of interest that CxAE also showed protective effects against DNA oxidative damage associated with presence of ellagic acid, a phenolic acid with antioxidant activities. CxAE did not induce in vivo mutagenicity, suggesting that this extract poses a low toxic hazard over the short term.


Asunto(s)
Myrtaceae/toxicidad , Estrés Oxidativo , Animales , Compuestos de Bifenilo , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Masculino , Pruebas de Micronúcleos , Myrtaceae/química , Picratos , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Hojas de la Planta/química , Ratas , Ratas Wistar
3.
Oxid Med Cell Longev ; 2018: 7804135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210656

RESUMEN

The use in folk medicine of Baccharis trimera and recent studies on DNA damage by oxidative stress mechanisms have motivated this study. We investigated the biotoxicological effects of trimeroside from this plant. Aqueous extract from aerial parts of B. trimera was fractioned by flash chromatography for further isolation by thin-layer chromatography. The novel nor-monoterpene glycoside, trimeroside, and three flavonoids, cirsimaritin, luteolin and quercetin, were isolated. The genotoxic and mutagenic potential of trimeroside was determined by Salmonella/microsome (TA98 and TA100), comet assay, and cytokinesis-block micronucleus cytome assay (CBMN-cyt) in HepG2 cells. We also screened trimeroside into different human tumoral cell lines by sulforhodamine B (SRB) assay. Mutagenicity was detected in TA100 strain with metabolic activation. Genotoxic effects were not observed in HepG2 by comet assay. However, a decrease in the nuclear index division in the 2.0 mg·mL-1 concentration and an increase of nucleoplasmic bridges in the 1.5 mg·mL-1 concentration were detected by CBMN-cyt assay indicating cytotoxic and mutagenic effects. In SRB assay, trimeroside showed weak antiproliferative activity against the cell lines.


Asunto(s)
Baccharis/química , Ciclohexenos/toxicidad , Glicósidos/toxicidad , Animales , Ensayo Cometa , Ciclohexenos/química , Ciclohexenos/aislamiento & purificación , Daño del ADN , Glicósidos/química , Glicósidos/aislamiento & purificación , Células HT29 , Células Hep G2 , Humanos , Células KB , Ratones , Pruebas de Micronúcleos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA