Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36296556

RESUMEN

Edible insects are a potential alternative food source of high feed conversion efficiency and protein content. Zophobas atratus is an edible insect that adapts to different diets, enabling sustainable rearing by adding value to by-products and agro-industrial residues. This study aimed to evaluate the performance and nutritional characterization of Zophobas atratus larvae fed with different proportions of grape residue. Physicochemical analysis of the diets and larvae (AOAC procedures), fatty acid profile (chromatographic techniques), metals and non-metals (inductively coupled plasma optical emission spectrometry), larval mass gain, feed conversion efficiency, and mortality rate were assessed. The replacement of 25% of the conventional diet with grape residue increased lipid, ash, and fiber contents and reduced protein, carbohydrates, and energy. It promoted greater mass gain, lower mortality rate, and reduced larval growth time by 51%. Among the replacements, 25% resulted in the second-highest content of calcium, sodium, magnesium, and zinc, and the lowest content of potassium and phosphorus in the larvae. The 100% replacement resulted in the highest amounts of C18:2n6 (27.8%), C18:3n3 (2.2%), and PUFA (30.0%). Replacing 25% of the conventional diet with grape residue is equivalent to the conventional diet in many aspects and improves several larvae performance indices and nutritional values.


Asunto(s)
Calcio , Escarabajos , Animales , Larva , Calcio/metabolismo , Magnesio/metabolismo , Escarabajos/metabolismo , Alimentación Animal/análisis , Ácidos Grasos/metabolismo , Fósforo/metabolismo , Carbohidratos , Zinc/metabolismo , Sodio/metabolismo , Potasio/metabolismo
2.
Int J Biol Macromol ; 159: 739-750, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32439435

RESUMEN

This work aimed to use sodium trimetaphosphate/sodium tripolyphosphate cross-linked potato, banana, corn, cassava, and breadfruit starches as wall materials for C-phycocyanin encapsulation, characterize them and evaluate their in vivo pharmacological effects in an inflammation model. The cross-linked starches were successfully obtained, characterized, and submitted to C-phycocyanin encapsulation by freeze-drying. The characterization of cross-linked starches-C-phycocyanin composites by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and differential scanning calorimetry demonstrated that the C-phycocyanin was encapsulated between amorphous chains of cross-linked starches. Among the five preparations, the cross-linked potato starch presented the highest phosphorous content (0.084%), substitution degree (0.004), water uptake capacity (0.88 g g-1), and C-phycocyanin encapsulation efficiency (67.58%), thus was tested in vivo. The cross-linked potato starch-C-phycocyanin prolonged the antihyperalgesic effects attributed to C-phycocyanin, evaluated by complete Freund's adjuvant (CFA) model. Starch cross-linking promoted the formation of a hydrogel network in swollen state entrapping C-phycocyanin, thus, acting as a barrier to its release to the medium and promoting long-lasting in vivo effects. The combination of chemical modification of starches followed by physical treatment presented itself as a useful tool for the development of pharmaceutical formulations.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Reactivos de Enlaces Cruzados/química , Compuestos Organofosforados/química , Ficocianina/química , Almidón/química , Ácidos Esteáricos/química , Rastreo Diferencial de Calorimetría , Cromatografía Líquida de Alta Presión , Aceites/química , Fósforo/química , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Agua/química , Difracción de Rayos X
3.
Int J Biol Macromol ; 132: 32-42, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30880053

RESUMEN

Analytical techniques such HPSEC, DSC, and TGA have been employed for amylose determination in starch samples, though spectrophotometry by iodine binding is most commonly used. The vast majority of these techniques require an analytical curve, using amylose and amylopectin standards with physicochemical properties similar to those found in the original starch. The current study aimed to obtain the amylose and amylopectin fractions from potato, banana, corn, and cassava starches, characterize them, and evaluate their behavior via thermogravimetric curves. Blue amylose iodine complex and HPSEC-DRI methods have obtained high purity amylose and amylopectin fractions. All molecular weights of the obtained amylose and amylopectin fractions were similar to those presented in other reports. Different results were obtained by deconvolution of the amylopectin polymodal distribution. All amyloses presented as semi-crystalline V-type polymorphs, while all amylopectin fractions were amorphous. The Tg of all Vamyloses presented were directly proportional to their respective crystalline index. TGA evaluations have shown that selective precipitation of amylose with 1-butanol strongly changes its thermal behavior. Therefore, the separation procedure used was an ineffective pathway for obtaining standards for thermal studies.


Asunto(s)
Amilopectina/química , Amilosa/química , Manihot/química , Musa/química , Solanum tuberosum/química , Zea mays/química , Amilopectina/aislamiento & purificación , Amilosa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA