Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Elife ; 92020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32613943

RESUMEN

Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive acylsugars, with sidechains that vary in length across the family. We describe a tomato gene cluster on chromosome 7 involved in medium chain acylsugar accumulation due to trichome specific acyl-CoA synthetase and enoyl-CoA hydratase genes. This cluster co-localizes with a tomato steroidal alkaloid gene cluster and is syntenic to a chromosome 12 region containing another acylsugar pathway gene. We reconstructed the evolutionary events leading to this gene cluster and found that its phylogenetic distribution correlates with medium chain acylsugar accumulation across the Solanaceae. This work reveals insights into the dynamics behind gene cluster evolution and cell-type specific metabolite diversity.


Plants produce a vast variety of different molecules known as secondary or specialized metabolites to attract pollinating insects, such as bees, or protect themselves against herbivores and pests. The secondary metabolites are made from simple building blocks that are readily available in plants, including amino acids, fatty acids and sugars. Different species of plant, and even different parts of the same plant, produce their own sets of secondary metabolites. For example, the hairs on the surface of tomatoes and other members of the nightshade family of plants make metabolites known as acylsugars. These chemicals deter herbivores and pests from damaging the plants. To make acylsugars, the plants attach long chains known as fatty acyl groups to molecules of sugar, such as sucrose. Some members of the nightshade family produce acylsugars with longer chains than others. In particular, acylsugars with long chains are only found in tomatoes and other closely-related species. It remained unclear how the nightshade family evolved to produce acylsugars with chains of different lengths. To address this question, Fan et al. used genetic and biochemical approaches to study tomato plants and other members of the nightshade family. The experiments identified two genes known as AACS and AECH in tomatoes that produce acylsugars with long chains. These two genes originated from the genes of older enzymes that metabolize fatty acids ­ the building blocks of fats ­ in plant cells. Unlike the older genes, AACS and AECH were only active at the tips of the hairs on the plant's surface. Fan et al. then investigated the evolutionary relationship between 11 members of the nightshade family and two other plant species. This revealed that AACS and AECH emerged in the nightshade family around the same time that longer chains of acylsugars started appearing. These findings provide insights into how plants evolved to be able to produce a variety of secondary metabolites that may protect them from a broader range of pests. The gene cluster identified in this work could be used to engineer other species of crop plants to start producing acylsugars as natural pesticides.


Asunto(s)
Evolución Molecular , Genes de Plantas/genética , Redes y Vías Metabólicas/genética , Familia de Multigenes/genética , Solanaceae/genética , Secuencia Conservada/genética , Variación Genética/genética , Solanaceae/metabolismo , Solanum/genética , Solanum/metabolismo , Tricomas/metabolismo
2.
Plant Physiol ; 183(3): 915-924, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32354879

RESUMEN

Plants make many biologically active, specialized metabolites, which vary in structure, biosynthesis, and the processes they influence. An increasing number of these compounds are documented to protect plants from insects, pathogens, or herbivores or to mediate interactions with beneficial organisms, including pollinators and nitrogen-fixing microbes. Acylsugars, one class of protective compounds, are made in glandular trichomes of plants across the Solanaceae family. While most described acylsugars are acylsucroses, published examples also include acylsugars with hexose cores. The South American fruit crop naranjilla (lulo; Solanum quitoense) produces acylsugars containing a myoinositol core. We identified an enzyme that acetylates triacylinositols, a function homologous to the last step in the acylsucrose biosynthetic pathway of tomato (Solanum lycopersicum). Our analysis reveals parallels between S. lycopersicum acylsucrose and S. quitoense acylinositol biosynthesis, suggesting a common evolutionary origin.


Asunto(s)
Vías Biosintéticas , Inositol/biosíntesis , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum/genética , Solanum/metabolismo , Tricomas/metabolismo , Acilación , Variación Genética
3.
Curr Opin Plant Biol ; 49: 8-16, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31009840

RESUMEN

Acylsugars are insecticidal plant specialized metabolites produced in the Solanaceae (nightshade family). Despite having simple constituents, these compounds are unusually structurally diverse. Their structural variations in phylogenetically closely related species enable comparative biochemical approaches to understand acylsugar biosynthesis and pathway diversification. Thus far, varied enzyme classes contributing to their synthesis were characterized in cultivated and wild tomatoes, including from core metabolism - isopropylmalate synthase (Leu) and invertase (carbon) - and a group of evolutionarily related BAHD acyltransferases known as acylsucrose acyltransferases. Gene duplication and neofunctionalization of these enzymes drove acylsugar diversification both within and beyond tomato. The broad set of evolutionary mechanisms underlying acylsugar diversity in Solanaceae make this metabolic network an exemplar for detailed understanding of the evolution of metabolic form and function.


Asunto(s)
Solanaceae , Solanum lycopersicum , Solanum , Aciltransferasas , Proteínas de Plantas , Tricomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA