Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochem Biophys Res Commun ; 659: 46-53, 2023 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-37031594

RESUMEN

Ischemic heart disease (IHD) is the leading cause of death on a global scale. Despite significant advances in the reperfusion treatment of acute myocardial infarction, there is still a significant early mortality rate among the elderly, as angioplasty-achieved reperfusion can exacerbate myocardial damage, leading to severe ischemia/reperfusion (I/R) injury and induce fatal arrhythmias. Mitochondria are a key mediator of ischemic insults; a transient blockade of the electron transport chain (ETC) at complex I during reperfusion can reduce myocardial infarct caused by ischemic insults. The reversible, transient modulation of complex I during early reperfusion is limited by the available of clinically tractable agents. We employed the novel use of acute, high dose metformin to modulate complex I activity during early reperfusion to decrease cardiac injury in the high-risk aged heart. Young (3-6 months) and aged (22-24 months) male and female C57BL/6 J mice were subjected to in vivo regional ischemia for 45 min, followed by metformin (2 mM, i. v.) injection 5 min prior to reperfusion for 24 h. The cardiac functions were measured with echocardiography. A Seahorse XF24 Analyzer was used to ascertain mitochondrial function. Cardiomyocyte sarcomere shortening and calcium transients were measured using the IonOptix Calcium and Contractility System. The results demonstrated that administration of acute, high dose metformin at the onset of reperfusion significantly limited cardiac damage and rescued cardiac dysfunction caused by I/R in both young and aged mice. Importantly, metformin treatment improves contractile functions of isolated cardiomyocytes and maintains mitochondrial integrity under I/R stress conditions. Thus, acute metformin administration at the onset of reperfusion has potential as a mitochondrial-based therapeutic to mitigate reperfusion injury and reduce infarct size in the elderly heart attack patient who remains at greater mortality risk despite reperfusion alone.


Asunto(s)
Metformina , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Masculino , Femenino , Ratones , Animales , Metformina/farmacología , Metformina/uso terapéutico , Daño por Reperfusión Miocárdica/metabolismo , Calcio/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo , Mitocondrias/metabolismo , Isquemia/metabolismo , Metabolismo Energético , Mitocondrias Cardíacas/metabolismo
2.
J Appl Physiol (1985) ; 131(1): 265-276, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33982590

RESUMEN

The purpose of the study was to determine whether neuromuscular electrical stimulation resistance training (NMES-RT)-evoked muscle hypertrophy is accompanied by increased V̇o2 peak, ventilatory efficiency, and mitochondrial respiration in individuals with chronic spinal cord injury (SCI). Thirty-three men and women with chronic, predominantly traumatic SCI were randomized to either NMES-RT (n = 20) or passive movement training (PMT; n = 13). Functional electrical stimulation-lower extremity cycling (FES-LEC) was used to test the leg V̇o2 peak, V̇E/V̇co2 ratio, and substrate utilization pre- and postintervention. Magnetic resonance imaging was used to measure muscle cross-sectional area (CSA). Finally, muscle biopsy was performed to measure mitochondrial complexes and respiration. The NMES-RT group showed a significant increase in postintervention V̇o2 peak compared with baseline (ΔV̇o2 = 14%, P < 0.01) with no changes in the PMT group (ΔV̇o2 = 1.6%, P = 0.47). Similarly, thigh (ΔCSAthigh = 19%) and knee extensor (ΔCSAknee = 30.4%, P < 0.01) CSAs increased following NMES-RT but not after PMT. The changes in thigh and knee extensor muscle CSAs were positively related with the change in V̇o2 peak. Neither NMES-RT nor PMT changed mitochondrial complex tissue levels; however, changes in peak V̇o2 were related to complex I. In conclusion, in persons with SCI, NMES-RT-induced skeletal muscle hypertrophy was accompanied by increased peak V̇o2 consumption which may partially be explained by enhanced activity of mitochondrial complex I.NEW & NOTEWORTHY Leg oxygen uptake (V̇o2) and ventilatory efficiency (V̇E/V̇co2 ratio) were measured during functional electrical stimulation cycling testing following 12-16 wk of either electrically evoked resistance training or passive movement training, and the respiration of mitochondrial complexes. Resistance training increased thigh muscle area and leg V̇o2 peak but decreased V̇E/V̇co2 ratio without changes in mitochondrial complex levels. Leg V̇o2 peak was associated with muscle hypertrophy and mitochondrial respiration of complex I following training.


Asunto(s)
Terapia por Estimulación Eléctrica , Entrenamiento de Fuerza , Traumatismos de la Médula Espinal , Estimulación Eléctrica , Femenino , Humanos , Masculino , Músculo Esquelético , Oxígeno , Traumatismos de la Médula Espinal/terapia
3.
Trials ; 20(1): 526, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31443727

RESUMEN

BACKGROUND: Persons with spinal cord injury (SCI) are at heightened risks of developing unfavorable cardiometabolic consequences due to physical inactivity. Functional electrical stimulation (FES) and surface neuromuscular electrical stimulation (NMES)-resistance training (RT) have emerged as effective rehabilitation methods that can exercise muscles below the level of injury and attenuate cardio-metabolic risk factors. Our aims are to determine the impact of 12 weeks of NMES + 12 weeks of FES-lower extremity cycling (LEC) compared to 12 weeks of passive movement + 12 weeks of FES-LEC on: (1) oxygen uptake (VO2), insulin sensitivity, and glucose disposal in adults with SCI; (2) skeletal muscle size, intramuscular fat (IMF), and visceral adipose tissue (VAT); and (3) protein expression of energy metabolism, protein molecules involved in insulin signaling, muscle hypertrophy, and oxygen uptake and electron transport chain (ETC) activities. METHODS/DESIGN: Forty-eight persons aged 18-65 years with chronic (> 1 year) SCI/D (AIS A-C) at the C5-L2 levels, equally sub-grouped by cervical or sub-cervical injury levels and time since injury, will be randomized into either the NMES + FES group or Passive + FES (control group). The NMES + FES group will undergo 12 weeks of evoked RT using twice-weekly NMES and ankle weights followed by twice-weekly progressive FES-LEC for an additional 12 weeks. The control group will undergo 12 weeks of passive movement followed by 12 weeks of progressive FES-LEC. Measurements will be performed at baseline (B; week 0), post-intervention 1 (P1; week 13), and post-intervention 2 (P2; week 25), and will include: VO2 measurements, insulin sensitivity, and glucose effectiveness using intravenous glucose tolerance test; magnetic resonance imaging to measure muscle, IMF, and VAT areas; muscle biopsy to measure protein expression and intracellular signaling; and mitochondrial ETC function. DISCUSSION: Training through NMES + RT may evoke muscle hypertrophy and positively impact oxygen uptake, insulin sensitivity, and glucose effectiveness. This may result in beneficial outcomes on metabolic activity, body composition profile, mitochondrial ETC, and intracellular signaling related to insulin action and muscle hypertrophy. In the future, NMES-RT may be added to FES-LEC to improve the workloads achieved in the rehabilitation of persons with SCI and further decrease muscle wasting and cardio-metabolic risks. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02660073 . Registered on 21 Jan 2016.


Asunto(s)
Ciclismo , Terapia por Estimulación Eléctrica/métodos , Metabolismo Energético , Músculo Esquelético/inervación , Atrofia Muscular/terapia , Entrenamiento de Fuerza/métodos , Traumatismos de la Médula Espinal/rehabilitación , Adolescente , Adulto , Anciano , Biomarcadores/sangre , Glucemia/metabolismo , Terapia por Estimulación Eléctrica/efectos adversos , Femenino , Humanos , Insulina/sangre , Extremidad Inferior , Masculino , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/sangre , Atrofia Muscular/diagnóstico , Atrofia Muscular/fisiopatología , Ensayos Clínicos Controlados Aleatorios como Asunto , Entrenamiento de Fuerza/efectos adversos , Traumatismos de la Médula Espinal/sangre , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/fisiopatología , Factores de Tiempo , Resultado del Tratamiento , Virginia , Adulto Joven
4.
J Pharmacol Exp Ther ; 369(2): 282-290, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30846619

RESUMEN

Transient, reversible blockade of complex I during early reperfusion after ischemia limits cardiac injury. We studied the cardioprotection of high dose of metformin in cultured cells and mouse hearts via the novel mechanism of acute downregulation of complex I. The effect of high dose of metformin on complex I activity was studied in isolated heart mitochondria and cultured H9c2 cells. Protection with metformin was evaluated in H9c2 cells at reoxygenation and at early reperfusion in isolated perfused mouse hearts and in vivo regional ischemia reperfusion. Acute, high-dose metformin treatment inhibited complex I in ischemia-damaged mitochondria and in H9c2 cells following hypoxia. Accompanying the complex I modulation, high-dose metformin at reoxygenation decreased death in H9c2 cells. Acute treatment with high-dose metformin at the end of ischemia reduced infarct size following ischemia reperfusion in vitro and in vivo, including in the AMP kinase-dead mouse. Metformin treatment during early reperfusion improved mitochondrial calcium retention capacity, indicating decreased permeability transition pore (MPTP) opening. Acute, high-dose metformin therapy decreased cardiac injury through inhibition of complex I accompanied by attenuation of MPTP opening. Moreover, in contrast to chronic metformin treatment, protection by acute, high-dose metformin is independent of AMP-activated protein kinase activation. Thus, a single, high-dose metformin treatment at reperfusion reduces cardiac injury via modulation of complex I.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Metformina/farmacología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Citoprotección/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Masculino , Metformina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Conformación Proteica/efectos de los fármacos
5.
J Biol Chem ; 292(51): 20989-20997, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29046352

RESUMEN

Dineolignans manassantin A and B from the plant Saururus cernuus are used in traditional medicine to manage a wide range of ailments such as edema, jaundice, and gonorrhea. Cell-based studies have identified several molecular target candidates of manassantin including NF-κB, MAPK, STAT3, and hypoxia-inducible factor 1α (HIF-1α). It is unclear whether or how these structurally diverse proteins or pathways mediate any of the medical benefits of manassantin in vivo Moreover, it has recently been reported that manassantin causes developmental arrest in zebrafish by inhibiting the mitochondrial complex I, but it is unknown whether manassantin inhibits mitochondrial respiration in intact mammalian cells and live animals. Here, we present direct evidence that manassantin potently and specifically inhibits the mitochondrial complex I and bioenergetic activity in mammalian systems. Manassantin had no effect on complex II- or complex IV-mediated respiration. Of note, it decreased NADH-ubiquinone reductase activity but not the activity of NADH-ferricyanide reductase. Treatment with manassantin reduced cellular ATP levels and concomitantly stimulated AMP-activated protein kinase in vitro and in vivo As an adaptive response to manassantin-induced bioenergetic deficiency, mammalian cells up-regulated aerobic glycolysis, a process mediated by AMP-activated protein kinase (AMPK) independently of HIF-1α. Together these results demonstrate a biologically important activity of manassantin in the control of complex I-mediated respiration and its profound effects on oxygen utilization, energy homeostasis, and glucose metabolism in mammalian cells.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Metabolismo Energético/efectos de los fármacos , Furanos/farmacología , Lignanos/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Activación Enzimática/efectos de los fármacos , Glucólisis/efectos de los fármacos , Células Hep G2 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos
6.
J Nutr ; 144(7): 1030-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24759932

RESUMEN

HDL and apolipoprotein A1 (apoA1) concentrations inversely correlate with risk of death from ischemic heart disease; however, the role of apoA1 in the myocardial response to ischemia has not been well defined. To test whether apoA1, the primary HDL apolipoprotein, has an acute anti-inflammatory role in ischemic heart disease, we induced myocardial infarction via direct left anterior descending coronary artery ligation in apoA1 null (apoA1(-/-)) and apoA1 heterozygous (apoA1(+/-)) mice. We observed that apoA1(+/-) and apoA1(-/-) mice had a 52% and 125% increase in infarct size as a percentage of area at risk, respectively, compared with wild-type (WT) C57BL/6 mice. Mitochondrial oxidation contributes to tissue damage in ischemia-reperfusion injury. A substantial defect was present at baseline in the electron transport chain of cardiac myocytes from apoA1(-/-) mice localized to the coenzyme Q (CoQ) pool with impaired electron transfer (67% decrease) from complex II to complex III. Administration of coenzyme Q10 (CoQ10) to apoA1 null mice normalized the cardiac mitochondrial CoQ pool and reduced infarct size to that observed in WT mice. CoQ10 administration did not significantly alter infarct size in WT mice. These data identify CoQ pool content leading to impaired mitochondrial function as major contributors to infarct size in the setting of low HDL/apoA1. These data suggest a previously unappreciated mechanism for myocardial stunning, cardiac dysfunction, and muscle pain associated with low HDL and low apoA1 concentrations that can be corrected by CoQ10 supplementation and suggest populations of patients that may benefit particularly from CoQ10 supplementation.


Asunto(s)
Antioxidantes/metabolismo , Apolipoproteína A-I/metabolismo , Modelos Animales de Enfermedad , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/terapia , Miocardio/metabolismo , Ubiquinona/análogos & derivados , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Antioxidantes/uso terapéutico , Apolipoproteína A-I/sangre , Apolipoproteína A-I/genética , Cardiotónicos/administración & dosificación , Cardiotónicos/metabolismo , Cardiotónicos/farmacocinética , Cardiotónicos/uso terapéutico , Suplementos Dietéticos , Transporte de Electrón/efectos de los fármacos , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Corazón/efectos de los fármacos , Hipoalfalipoproteinemias/fisiopatología , Inyecciones Intraperitoneales , Absorción Intestinal , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/enzimología , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/enzimología , Miocardio/patología , Distribución Tisular , Ubiquinona/administración & dosificación , Ubiquinona/metabolismo , Ubiquinona/farmacocinética , Ubiquinona/uso terapéutico
7.
J Am Coll Cardiol ; 57(21): 2181-9, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21596234

RESUMEN

OBJECTIVES: The aim of this study was to test the hypothesis that long-term dietary nitrate supplementation protects against doxorubicin-induced cardiomyopathy by improving ventricular function and reducing mitochondrial respiratory chain damage. BACKGROUND: Doxorubicin is a powerful anthracycline antibiotic used to treat divergent human neoplasms. Its clinical use is limited because of severe cardiotoxic side effects. Dietary nitrate and nitrite are essential nutrients for maintenance of steady-state tissue levels of nitric oxide and may play a therapeutic role in diseases associated with nitric oxide insufficiency or dysregulation. Dietary nitrate and nitrite supplementation alleviates myocardial injury caused by ischemia-reperfusion and cardiac arrest-resuscitation. METHODS: Adult male CF-1 mice were given a single dose of doxorubicin (15 mg/kg intraperitoneally), and left ventricular contractile function was assessed 5 days later using both echocardiography and pressure-volume Millar catheterization. A nitrate supplementation regimen (1 g/l sodium nitrate in drinking water) was started 7 days before doxorubicin injection and continued thereafter. Cardiomyocyte necrosis and apoptosis, tissue lipid peroxidation, and plasma nitrate and nitrite levels were assessed. In addition, mitochondrial complex I activity, oxidative phosphorylation capacity, and hydrogen peroxide generation were determined in parallel experiments. RESULTS: Doxorubicin caused impairment of ventricular contractility and cell death, which were significantly reduced by nitrate supplementation (p < 0.05). These cardioprotective effects were associated with a significant decrease in tissue lipid peroxidation. Nitrate supplementation significantly preserved mitochondrial complex I activity and oxidative phosphorylation and attenuated hydrogen peroxide generation after doxorubicin treatment. CONCLUSIONS: Long-term oral intake of inorganic nitrate attenuates doxorubicin-induced ventricular dysfunction, cell death, oxidative stress, and mitochondrial respiratory chain damage. Nitrate could be a promising therapeutic agent against doxorubicin-induced cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Suplementos Dietéticos , Doxorrubicina/efectos adversos , Nitratos/uso terapéutico , Animales , Cardiomiopatías/metabolismo , Transporte de Electrón/efectos de los fármacos , Masculino , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Nitratos/farmacología , Nitritos/farmacología , Nitritos/uso terapéutico , Fosforilación Oxidativa/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
8.
J Cardiovasc Pharmacol ; 54(4): 298-309, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19620879

RESUMEN

Mitochondria are damaged by cardiac ischemia/reperfusion (I/R) injury but can contribute to cardioprotection. We tested if hyperkalemic cardioplegia (CP) and lidocaine (LID) differently modulate mitochondrial (m) bioenergetics and protect hearts against I/R injury. Guinea pig hearts (n = 71) were perfused with Krebs Ringer's solution before perfusion for 1 minute just before ischemia with either CP (16 mM K) or LID (1 mM) or Krebs Ringer's (control, 4 mM K). The 1-minute perfusion period assured treatment during ischemia but not on reperfusion. Cardiac function, NADH, FAD, m[Ca], and superoxide (reactive oxygen species) were assessed at baseline, during the 1-minute perfusion, and continuously during I/R. During the brief perfusion before ischemia, CP and LID decreased reactive oxygen species and increased NADH without changing m[Ca]. Additionally, CP decreased FAD. During ischemia, NADH was higher and reactive oxygen species was lower after CP and LID, whereas m[Ca] was lower only after LID. On reperfusion, NADH and FAD were more normalized, and m[Ca] and reactive oxygen species remained lower after CP and LID. Better functional recovery and smaller infarct size after CP and LID were accompanied by better mitochondrial function. These results suggest that mitochondria may be implicated, directly or indirectly, in protection by CP and LID against I/R injury.


Asunto(s)
Cardiotónicos/farmacología , Metabolismo Energético/efectos de los fármacos , Paro Cardíaco Inducido , Lidocaína/farmacología , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica/efectos de los fármacos , Potasio/farmacología , Animales , Calcio/metabolismo , Soluciones Cardiopléjicas , Cobayas , Frecuencia Cardíaca/efectos de los fármacos , Técnicas In Vitro , Daño por Reperfusión Miocárdica/prevención & control , Oxígeno/metabolismo , Perfusión , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA