Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Commun ; 13(1): 1238, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264584

RESUMEN

In the long history of traditional Chinese medicine, single herbs and complex formulas have been suggested to increase lifespan. However, the identification of single molecules responsible for lifespan extension has been challenging. Here, we collected a list of traditional Chinese medicines with potential longevity properties from pharmacopeias. By utilizing the mother enrichment program, we systematically screened these traditional Chinese medicines and identified a single herb, Psoralea corylifolia, that increases lifespan in Saccharomyces cerevisiae. Next, twenty-two pure compounds were isolated from Psoralea corylifolia. One of the compounds, corylin, was found to extend the replicative lifespan in yeast by targeting the Gtr1 protein. In human umbilical vein endothelial cells, RNA sequencing data showed that corylin ameliorates cellular senescence. We also examined an in vivo mammalian model, and found that corylin extends lifespan in mice fed a high-fat diet. Taken together, these findings suggest that corylin may promote longevity.


Asunto(s)
Células Endoteliales , Longevidad , Animales , Flavonoides/farmacología , Mamíferos , Medicina Tradicional China , Ratones
2.
Phytother Res ; 36(5): 2116-2126, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35229911

RESUMEN

The extracts from Psoralea corylifolia Linn. (P. corylifolia) seeds have been shown to display antitumor activity. To date, the prospects of this plant and its active compounds in the treatment of non-small-cell lung cancer (NSCLC) have not been thoroughly studied. In this study, we identified a novel psorachromene compound that displays selective cytotoxic effects on all NSCLC cells tested, including NSCLC cells harboring epidermal growth factor receptor (EGFR) activation mutants (H1975L858R/T790M and H1975-MS35L858R/T790M/C797S ). Psorachromene induces G1 arrest in NSCLC cells harboring wild-type EGFR but induces apoptosis in NSCLC cells harboring activating EGFR mutations. Psorachromene inhibits activated EGFR signaling and kinase activity and suppresses tumor growth of implanted H1975-MS35L858R/T790M/C797S cells in nude mice. Molecular docking analysis revealed that psorachromene could form stronger bonds with mutant EGFR than wild-type EGFR, which might account for the greater cytotoxic effects observed in NSCLC cells harboring activating EGFR mutations (H1975 and H1975-MS35) than wild-type EGFR (A549). In conclusion, it is suggested that psorachromene is an attractive agent to be further explored for its use in the treatment of NSCLC patients harboring EGFR L858R/T790M/C797S.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Simulación del Acoplamiento Molecular , Mutación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
Mol Med Rep ; 25(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34913071

RESUMEN

The antioxidant capability of herbal remedies has attracted widespread attention, but their molecular mechanisms in a muscle atrophy model have not been explored. The aim of the present study was to compare the bioactivity of sucrose challenged mice following treatment with ATG­125. Here, through a combination of transcriptomic and biomedical analysis, herbal formula ATG­125, a phytochemical­rich formula, was identified as a protective factor against muscle atrophy in sucrose challenged mice. Gene ontology (GO) identified differentially expressed genes that were primarily enriched in the 'negative regulation of proteolysis', 'cellular amino acid metabolic process', 'lipoprotein particle' and 'cell cycle', all of which were associated with the ATG­125­mediated prevention of muscle atrophy, particularly with regard to mitochondrial biogenesis. In skeletal muscle, a set of mitochondrial­related genes, including angiopoietin­like 4, nicotinamide riboside kinase 2 (Nmrk2), pyruvate dehydrogenase lipoamide kinase isozyme 4, Asc­type amino acid transporter 1 and mitochondrial uncoupling protein 3 (Ucp3) were markedly upregulated following ATG­125 intervention. An increase in Nmrk2 and Ucp3 expression were noted after ATG­125 treatment, in parallel with upregulation of the 'nicotinate and nicotinamide metabolism' pathway, as determined using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, KEGG pathway analysis revealed the downregulation of 'complement and coagulation cascades', 'cholesterol metabolism', 'biosynthesis of amino acids' and 'PPAR signaling pathway', which were associated with the downregulation of serine (or cysteine) peptidase inhibitor clade A member (Serpina)3, Serpina1b, Serpina1d, Serpina1e, apolipoprotein (Apo)a1 and Apoa2, all of which were cardiovascular and diabetes­associated risk factors and were regulated by ATG­125. In addition, ATG­125 treatment resulted in downregulated mRNA expression levels of ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, troponin­I1, troponin­C1 and troponin­T1 in young adult gastrocnemius muscle compared with the sucrose group. Nuclear factor­κB­hypoxia inducible factor­1α­TGFß receptor type­II­vascular endothelial growth factor staining indicated that ATG­125 decreased sucrose­induced chronic inflammation. ATG­125 was sufficient to prevent muscle atrophy, and this protective effect may be mediated through upregulation of AKT phosphorylation, upregulating the insulin growth factor­1R­insulin receptor substrate­PI3K­AKT pathway, which in turn resulted in a forkhead box O­dependent decrease in protein degradation pathways, including regulation of atrogin1 and E3 ubiquitin­protein ligase TRIM63. Peroxisome­proliferator activated receptor γ coactivator 1α (PGC1α) was decreased in young adult mice challenged with sucrose. ATG­125 treatment significantly increased PGC1α and significantly increased UCP­1,2,3 expression levels, which suggested ATG­125 poised the mitochondria for uncoupling of respiration. This effect is consistent with the increased SIRT1 levels and may explain an increase in mitochondria biogenesis. Taken together, the present study showed that ATG­125, as an integrator of protein synthesis and degradative pathways, prevented muscle wasting.


Asunto(s)
Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Mitocondrias/patología , Músculo Esquelético/citología , Músculo Esquelético/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Sacarosa/toxicidad
4.
Front Pharmacol ; 12: 762829, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955833

RESUMEN

Neutrophils are the primary immune cells in innate immunity, which are related to various inflammatory diseases. Astragalus mongholicus Bunge is a Chinese medicinal herb used to treat various oxidative stress-related inflammatory diseases. However, there are limited studies that elucidate the effects of Astragalus mongholicus Bunge in human neutrophils. In this study, we used isolated human neutrophils activated by various stimulants to investigate the anti-inflammatory effects of Astragalus mongholicus Bunge water extract (AWE). Cell-free assays were used to examine free radicals scavenging capabilities on superoxide anion, reactive oxygen species (ROS), and nitrogen-centered radicals. Imiquimod (IMQ) induced psoriasis-like skin inflammation mouse model was used for investigating anti-psoriatic effects. We found that AWE inhibited superoxide anion production, ROS generation, and elastase release in human neutrophils, which exhibiting a direct anti-neutrophil effect. Moreover, AWE exerted a ROS scavenging ability in the 2,2'-Azobis (2-amidinopropane) dihydrochloride assay, but not superoxide anion in the xanthine/xanthine oxidase assay, suggesting that AWE exhibited anti-oxidation and anti-inflammatory capabilities by both scavenging ROS and by directly inhibiting neutrophil activation. AWE also reduced CD11b expression and adhesion to endothelial cells in activated human neutrophils. Meanwhile, in mice with psoriasis-like skin inflammation, administration of topical AWE reduced both the affected area and the severity index score. It inhibited neutrophil infiltration, myeloperoxidase release, ROS-induced damage, and skin proliferation. In summary, AWE exhibited direct anti-inflammatory effects by inhibiting neutrophil activation and anti-psoriatic effects in mice with IMQ-induced psoriasis-like skin inflammation. Therefore, AWE could potentially be a pharmaceutical Chinese herbal medicine to inhibit neutrophilic inflammation for anti-psoriasis.

5.
Molecules ; 26(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34500594

RESUMEN

Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient's survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study's aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Flavonoides/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Células A549 , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina B1 , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Transducción de Señal/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
6.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575923

RESUMEN

Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Daño del ADN/efectos de los fármacos , Flavonoides/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Medicamentos Herbarios Chinos , Regulación de la Expresión Génica , Recombinación Homóloga/efectos de los fármacos , Humanos , Ratones , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo
7.
Biomolecules ; 10(1)2019 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877715

RESUMEN

Daphne genkwa, a Chinese medicinal herb, is used frequently in Southeast Asian countries to treat diseases; the flavonoid hydroxygenkwanin (HGK) is extracted from its flower buds. The bioactivity of HGK, particularly as an anti-liver cancer agent, has not been explored. In this study, human hepatocellular carcinoma (HCC) cell lines and an animal xenograft model were employed to investigate both the activity of HGK against liver cancer and its cellular signaling mechanisms. HCC cells treated with HGK were subjected to cell function assays. Whole transcriptome sequencing was used to identify genes whose expression was influenced by HGK, and the flavonoid's cancer suppression mechanisms were further investigated through gain- and loss-of-function assays. Finally, in vitro findings were tested in a mouse xenograft model. The data showed that HGK induced the expression of the microRNA miR-320a, which in turn inhibited the expression of the transcription factor 'forkhead box protein M1' (FOXM1) and downstream FOXM1-regulated proteins related to epithelial-mesenchymal transition, thereby leading to the suppression of liver cancer cell growth and invasion. Significant inhibition of tumor growth was also observed in HGK-treated mice. Hence, the present study demonstrated the activity of HGK against liver cancer and validated its potential use as a therapeutic agent.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/fisiopatología , Medicamentos Herbarios Chinos/administración & dosificación , Transición Epitelial-Mesenquimal/efectos de los fármacos , Flavonoides/administración & dosificación , Proteína Forkhead Box M1/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , MicroARNs/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Daphne/química , Proteína Forkhead Box M1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatología , Masculino , Ratones Desnudos , MicroARNs/metabolismo
8.
Foodborne Pathog Dis ; 16(8): 573-580, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30994374

RESUMEN

Psoralea corylifolia seeds contain many bioactive compounds commonly used in traditional Chinese medicine. In this study, the antibacterial activity and possible mechanism of P. corylifolia seed ethanol extract (PCEE) against foodborne pathogens were investigated. Both methicillin-resistant Staphylococcus aureus (MRSA) and Listeria monocytogenes had similar minimum inhibitory concentrations and minimum bactericidal concentrations of PCEE at 50 and 100 µg/mL, respectively. Furthermore, elevated OD260, protein concentration, and electric conductivity indicated irreversible damage to the cytoplasmic membranes of PCEE-treated cells. Indeed, the treated cells displayed disrupted membranes, incomplete and deformed shapes, and rupture as visualized by scanning electron microscopy. Multidrug-resistance efflux pump gene expression was also analyzed by quantitative reverse transcription PCR. Although the mdrL, mdrT, and lde genes of L. monocytogenes and the mepA gene of MRSA were upregulated, there was no significant difference that indicated an attempt by the efflux pumps to discharge PCEE. MRSA norA expression and abcA expression were significantly downregulated (p < 0.05). A possible mechanism for PCEE may be to cause an energy depletion, either by inhibiting adenosine triphosphate binding or by disturbing the proton gradient, resulting in membrane damage.


Asunto(s)
Antiinfecciosos/farmacología , Microbiología de Alimentos , Listeria monocytogenes/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Extractos Vegetales/farmacología , Psoralea , Humanos , Pruebas de Sensibilidad Microbiana , Semillas
9.
Int J Obes (Lond) ; 43(12): 2407-2421, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30944419

RESUMEN

BACKGROUND/OBJECTIVES: Low-grade chronic inflammation in visceral adipose tissue and the intestines are important drivers of obesity associated insulin resistance. Bioactive compounds derived from plants are an important source of potential novel therapies for the treatment of chronic diseases. In search for new immune based treatments of obesity associated insulin resistance, we screened for tissue relevant anti-inflammatory properties in 20 plant-based extracts. METHODS: We screened 20 plant-based extracts to assess for preferential production of IL-10 compared to TNFα, specifically targetting metabolic tissues, including the visceral adipose tissue. We assessed the therapeutic potential of the strongest anti-inflammatory compound, indigo, in the C57BL/6J diet-induced obesity mouse model with supplementation for up to 16 weeks by measuring changes in body weight, glucose and insulin tolerance, and gut barrier function. We also utilized flow cytometry, quantitative PCR, enzyme-linked immunosorbent assay (ELISA), and histology to measure changes to immune cells populations and cytokine profiles in the intestine, visceral adipose tissue (VAT), and liver. 16SrRNA sequencing was performed to examine gut microbial differences induced by indigo supplementation. RESULTS: We identifed indigo, an aryl hydrocarbon receptor (AhR) ligand agonist, as a potent inducer of IL-10 and IL-22, which protects against high-fat diet (HFD)-induced insulin resistance and fatty liver disease in the diet-induced obesity model. Therapeutic actions were mechanistically linked to decreased inflammatory immune cell tone in the intestine, VAT and liver. Specifically, indigo increased Lactobacillus bacteria and elicited IL-22 production in the gut, which improved intestinal barrier permeability and reduced endotoxemia. These changes were associated with increased IL-10 production by immune cells residing in liver and VAT. CONCLUSIONS: Indigo is a naturally occurring AhR ligand with anti-inflammatory properties that effectively protects against HFD-induced glucose dysregulation. Compounds derived from indigo or those with similar properties could represent novel therapies for diseases associated with obesity-related metabolic tissue inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Carmin de Índigo/farmacología , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Receptores de Hidrocarburo de Aril/agonistas , Animales , Citocinas/metabolismo , Dieta Alta en Grasa , Microbioma Gastrointestinal , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/química
10.
Eur J Pharm Sci ; 124: 114-126, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30153523

RESUMEN

8­Methoxypsoralen (8-MOP) in combination with ultraviolet A (PUVA) is a photochemotherapy for management of psoriasis. 8-MOP is a natural compound from Psoralea corylifolia. The present work was undertaken to evaluate the percutaneous absorption of five compounds derived from P. corylifolia, and to further explore the inhibitory effect on psoriasis-like lesions generated by imiquimod stimulation in a mouse model. 8-MOP, psoralen, isopsoralen, psoralidin, and bakuchiol were comparatively tested for in vitro skin permeation, keratinocyte apoptosis, and in vivo antipsoriatic potency. The pig ear skin deposition of 8-MOP, isopsoralen, and bakuchiol at an equimolar dose was 0.47, 0.58, and 0.50 nmol/mg, respectively, which was comparable and higher than that of psoralen (0.25 nmol/mg) and psoralidin (0.14 nmol/mg). Psoralidin and bakuchiol were absorbed into the skin without further penetration across the skin. Besides experimental data of physicochemical properties, the hydrogen bond number, total polarity surface, and stratum corneum lipid docking calculated could explain the correlation of the penetrant structure with the skin permeability. The antiproliferative activity against keratinocytes was stronger for 8-MOP and isopsoralen than the others. Topical application of PUVA by using 8-MOP and isopsoralen on imiquimod-induced plaque significantly reduced transepidermal water loss from 55 to 33 and 38 g/m2/h, respectively. The epidermal thickening elicited by imiquimod (117 µm) was decreased to 62 and 26 µm by 8-MOP and isopsoralen application. IL-6 expression in psoriasiform skin was downregulated by isopsoralen but not 8-MOP. Isopsoralen may be a potential candidate for PUVA therapy.


Asunto(s)
Benzofuranos/uso terapéutico , Cumarinas/uso terapéutico , Furocumarinas/uso terapéutico , Terapia PUVA , Fenoles/uso terapéutico , Psoralea , Psoriasis/tratamiento farmacológico , Animales , Benzofuranos/farmacología , Cumarinas/farmacología , Femenino , Furocumarinas/farmacología , Imiquimod , Queratinocitos/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Fenoles/farmacología , Fotoquimioterapia , Psoriasis/inducido químicamente , Piel/metabolismo , Absorción Cutánea , Porcinos , Rayos Ultravioleta
11.
Artículo en Inglés | MEDLINE | ID: mdl-29681982

RESUMEN

Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT) through the regulation of epidermal growth factor receptor (EGFR) signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinase (ERK) signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.

12.
Sci Rep ; 7(1): 12264, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28947773

RESUMEN

Enterovirus 71 (EV71) infection is endemic in the Asia-Pacific region. No specific antiviral drug has been available to treat EV71 infection. Melissa officinalis (MO) is a medicinal plant with long history of usage in the European and Middle East. We investigated whether an aqueous solution of concentrated methanolic extract (MOM) possesses antiviral activity. MOM inhibited plaque formation, cytopathic effect, and viral protein synthesis in EV71-infected cells. Using spectral techniques, we identified rosmarinic acid (RA) as a biologically active constituent of MOM. RA reduced viral attachment and entry; cleavage of eukaryotic translation initiation factor 4 G (eIF4G); reactive oxygen species (ROS) generation; and translocation of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) from nucleus to cytoplasm. It alleviated EV71-induced hyperphosphorylation of p38 kinase and EPS15. RA is likely to suppress ROS-mediated p38 kinase activation, and such downstream molecular events as hnRNP A1 translocation and EPS15-regulated membrane trafficking in EV71-infected cells. These findings suggest that MO and its constituent RA possess anti-EV71 activities, and may serve as a candidate drug for therapeutic and prophylactic uses against EV71 infection.


Asunto(s)
Antivirales/farmacología , Cinamatos/farmacología , Depsidos/farmacología , Enterovirus Humano A/efectos de los fármacos , Melissa/química , Extractos Vegetales/farmacología , Internalización del Virus/efectos de los fármacos , Antivirales/aislamiento & purificación , Línea Celular , Cinamatos/aislamiento & purificación , Efecto Citopatogénico Viral , Depsidos/aislamiento & purificación , Enterovirus Humano A/fisiología , Humanos , Extractos Vegetales/aislamiento & purificación , Ensayo de Placa Viral , Ácido Rosmarínico
13.
Sci Rep ; 7(1): 935, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28428548

RESUMEN

No effective drug is currently available for treatment of enterovirus 71 (EV71) infection. Schizonepeta tenuifolia Briq. (ST) has been used as a herbal constituent of traditional Chinese medicine. We studied whether the aqueous extract of Schizonepeta tenuifolia Briq (STE) has antiviral activity. STE inhibited replication of EV71, as evident by its ability to diminish plaque formation and cytopathic effect induced by EV71, and to inhibit the synthesis of viral RNA and protein. Moreover, daily single-dose STE treatment significantly improved the survival of EV71-infected mice, and ameliorated the symptoms. Mechanistically, STE exerts multiple effects on enteroviral infection. Treatment with STE reduced viral attachment and entry; the cleavage of eukaryotic translation initiation factor 4 G (eIF4G) by EV71 protease, 2Apro; virus-induced reactive oxygen species (ROS) formation; and relocation of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) from the nucleus to the cytoplasm. It was accompanied by a decline in EV71-associated hyperphosphorylation of p38 kinase and EPS15. It is plausible that STE may inhibit ROS-induced p38 kinase activation, and subsequent hnRNP A1 relocation and EPS15-mediated membrane trafficking in infected cells. These findings suggest that STE possesses anti-EV71 activities, and may serve as health food or candidate antiviral drug for protection against EV71.


Asunto(s)
Antivirales/uso terapéutico , Enterovirus Humano A/efectos de los fármacos , Infecciones por Enterovirus/tratamiento farmacológico , Lamiaceae/química , Extractos Vegetales/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antivirales/farmacología , Línea Celular Tumoral , Chlorocebus aethiops , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/virología , Factor 4G Eucariótico de Iniciación/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Ratones , Ratones Endogámicos ICR , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Vero , Replicación Viral , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
J Ethnopharmacol ; 201: 117-122, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28167294

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The medicinal mushroom Antrodia cinnamomea possesses anticancer properties but the active compounds responsible for these effects are mostly unknown. AIM OF THE STUDY: We aimed to identify novel A. cinnamomea compounds that produce cytotoxic effects on cancer cells. MATERIALS AND METHODS: Using ethanol extraction and chromatography, we isolated the lanostanoid compound lanosta-7,9(11),24-trien-3ß,15α,21-triol (1) from cultured A. cinnamomea mycelium. Cytotoxicity and pro-apoptotic effects of compound 1 were evaluated using the MTS assay and flow cytometry analysis, respectively. RESULTS: Compound 1 produced cytotoxic effects on the nasopharyngeal carcinoma cell lines TW02 and TW04, with IC50 values of 63.3 and 115.0µM, respectively. On the other hand, no cytotoxic effects were observed on non-tumorigenic nasopharyngeal epithelial cells (NP69). In addition, compound 1 induced apoptosis in TW02 and TW04 cells as revealed by flow cytometry analysis. CONCLUSIONS: Our results demonstrate for the first time the presence of pinicolol B in A. cinnamomea mycelium and suggest that this compound may contribute to the anticancer effects of A. cinnamomea.


Asunto(s)
Antineoplásicos/farmacología , Antrodia , Triterpenos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma/tratamiento farmacológico , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Micelio , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/tratamiento farmacológico
15.
Environ Toxicol ; 31(11): 1663-1673, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26179408

RESUMEN

Uncontrolled cell proliferation is a common feature of human cancer. Some of herbal extract or plant-derived medicine had been shown as an important source of effective anticancer agents. We previously reported that an n-BuOH-soluble fraction of Kalanchoe tubiflora has antiproliferative activity by inducing mitotic catastrophe. In this study, we showed that the H2 O-soluble fraction of Kalanchoe tubiflora (KT-W) caused cell cycle arrest, and senescence-inducing activities in A549 cells. We used 2 dimensional PAGE to analyze the protein expression levels after KT-W treatment, and identified that the energy metabolism-related proteins and senescence-related proteins were disturbed. In vivo experiments showed that the tumor growths in A549-xenografted nude mice were effectively inhibited by KT-W. Our findings implied that KT-W is a putative antitumor agent by inducing cell cycle arrest and senescence. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1663-1673, 2016.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Kalanchoe , Neoplasias Pulmonares/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Desnudos , Fitoterapia , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Sci Rep ; 5: 18204, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26659126

RESUMEN

The leaves of Perilla frutescens (L.) Britt. have been traditionally used as an herbal medicine in East Asian countries to treat a variety diseases. In this present study, we investigated the inhibitory effects of P. frutescens extract (PFE) on N-formyl-Met-Leu-Phe (fMLF)-stimulated human neutrophils and the underlying mechanisms. PFE (1, 3, and 10 µg/ml) inhibited superoxide anion production, elastase release, reactive oxygen species formation, CD11b expression, and cell migration in fMLF-activated human neutrophils in dose-dependent manners. PFE inhibited fMLF-induced phosphorylation of the Src family kinases (SFKs), Src (Tyr416) and Lyn (Tyr396), and reduced their enzymatic activities. Both PFE and PP2 (a selective inhibitor of SFKs) reduced the phosphorylation of Burton's tyrosine kinases (Tyr223) and Vav (Tyr174) in fMLF-activated human neutrophils. Additionally, PFE decreased intracellular Ca(2+) levels ([Ca(2+)]i), whereas PP2 prolonged the time required for [Ca(2+)]i to return to its basal level. Our findings indicated that PFE effectively regulated the inflammatory activities of fMLF-activated human neutrophils. The anti-inflammatory effects of PFE on activated human neutrophils were mediated through two independent signaling pathways involving SFKs (Src and Lyn) and mobilization of intracellular Ca(2+).


Asunto(s)
Antiinflamatorios/farmacología , Calcio/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Perilla frutescens/química , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/metabolismo , Agammaglobulinemia Tirosina Quinasa , Antígeno CD11b/metabolismo , Humanos , N-Formilmetionina Leucil-Fenilalanina/farmacología , Elastasa Pancreática/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
17.
Free Radic Biol Med ; 89: 387-400, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26432981

RESUMEN

Oxidative stress caused by neutrophils is an important pathogenic factor in trauma/hemorrhagic (T/H)-induced acute lung injury (ALI). Osthol, a natural coumarin found in traditional medicinal plants, has therapeutic potential in various diseases. However, the pharmacological effects of osthol in human neutrophils and its molecular mechanism of action remain elusive. In this study, our data showed that osthol potently inhibited the production of superoxide anion (O2(•-)) and reactive oxidants derived therefrom as well as expression of CD11b in N-formylmethionylleucylphenylalanine (FMLP)-activated human neutrophils. However, osthol inhibited neutrophil degranulation only slightly and it failed to inhibit the activity of subcellular NADPH oxidase. FMLP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) was inhibited by osthol. Notably, osthol increased the cAMP concentration and protein kinase A (PKA) activity in activated neutrophils. PKA inhibitors reversed the inhibitory effects of osthol, suggesting that these are mediated through cAMP/PKA-dependent inhibition of ERK and Akt activation. Furthermore, the activity of cAMP-specific phosphodiesterase (PDE) 4, but not PDE3 or PDE7, was significantly reduced by osthol. In addition, osthol reduced myeloperoxidase activity and pulmonary edema in rats subjected to T/H shock. In conclusion, our data suggest that osthol has effective anti-inflammatory activity in human neutrophils through the suppression of PDE4 and protects significantly against T/H shock-induced ALI in rats. Osthol may have potential for future clinical application as a novel adjunct therapy to treat lung inflammation caused by adverse circulatory conditions.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Cumarinas/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Estrés Oxidativo , Choque Hemorrágico/complicaciones , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Animales , Antígeno CD11b/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Immunoblotting , Masculino , Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Choque Hemorrágico/patología , Transducción de Señal/efectos de los fármacos , Superóxidos/metabolismo
18.
Sci Rep ; 5: 11734, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26133262

RESUMEN

The bioactive components extracted from Scutellariae radix and Rhei rhizoma (SR) have been commonly used to treat liver diseases. The aim of this study was to verify the underlying mechanisms and antifibrotic effects of ethanol extract from the herbal combinatorial formula (SRE) in a dimethylnitrosamine (DMN)-administered rat model, with functional proteome tools. Our results indicated that the hepatic collagen content and alpha-smooth muscle actin expression were obviously alleviated by treatment with SRE. Comprehensive proteomics revealed global protein changes, and the network analysis implied that SRE application would attenuate oxidative stress and cytoskeleton dysregulation caused by DMN exposure. Next, marked downregulation of antioxidant enzymes mediated by DMN treatment was restored in the presence of SRE, while SRE treatment contributed to decreased MDA content. Moreover, protein carbonylation and DNA adduction induced by oxidative stress finally leading to liver injury were also reduced under SRE administration. These findings demonstrate that SRE could effectively prevent hepatic fibrosis mainly through regulating the redox status, and subsequently modulating the modification of intracellular molecules. Our experiments might help in developing novel therapeutic strategies against oxidation-caused liver diseases.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Cirrosis Hepática/tratamiento farmacológico , Animales , Dimetilnitrosamina , Evaluación Preclínica de Medicamentos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Masculino , Oxidación-Reducción , Carbonilación Proteica , Ratas Wistar , Rheum/microbiología , Rizoma/química , Scutellaria baicalensis/química
19.
Nanoscale ; 6(17): 10297-306, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25069428

RESUMEN

Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 µM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.


Asunto(s)
Camellia sinensis/química , Catequina/análogos & derivados , Glioma/química , Nanopartículas de Magnetita/química , Nanocápsulas/química , Extractos Vegetales/química , Animales , Catequina/química , Línea Celular , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/síntesis química , Difusión , Humanos , Nanopartículas de Magnetita/ultraestructura , Ensayo de Materiales , Nanocápsulas/ultraestructura , Tamaño de la Partícula , Ratas , Propiedades de Superficie
20.
Proteomics ; 13(15): 2297-311, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23696413

RESUMEN

Hepatic ischemia-reperfusion (IR) injury is a common clinical problem and ROS may be a contributing factor on IR injury. The current study evaluates the potential protective effect of saffron ethanol extract (SEE) in a rat model upon hepatic IR injury. Caspases 3 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling (TUNEL) results showed increased cell death in the IR samples; reversely, minor apoptosis was detected in the SEE/IR group. Pretreatment with SEE significantly restored the content of antioxidant enzymes (SOD1 and catalase) and remarkably inhibited the intracellular ROS concentration in terms of reducing p47phox translocation. Proteome tools revealed that 20 proteins were significantly modulated in protein intensity between IR and SEE/IR groups. Particularly, SEE administration could attenuate the carbonylation level of several chaperone proteins. Network analysis suggested that saffron extract could alleviate IR-induced ER stress and protein ubiquitination, which finally lead to cell apoptosis. Taken together, SEE could reduce hepatic IR injury through modulating protein oxidation and our results might help to develop novel therapeutic strategies against ROS-caused diseases.


Asunto(s)
Crocus/química , Hepatopatías/metabolismo , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Proteoma/metabolismo , Daño por Reperfusión/metabolismo , Animales , Catalasa/análisis , Catalasa/metabolismo , Electroforesis en Gel Bidimensional , Etanol , Histocitoquímica , Etiquetado Corte-Fin in Situ , Hígado/química , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Carbonilación Proteica , Proteínas/análisis , Proteínas/metabolismo , Proteoma/análisis , Proteómica , Ratas , Ratas Wistar , Superóxido Dismutasa/análisis , Superóxido Dismutasa/metabolismo , Proteínas Ubiquitinadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA