Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 28(1): 1, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36722266

RESUMEN

BACKGROUND: The activation of subcutaneous mast cells (MCs) helps to trigger the analgesic effect induced by acupuncture (AP), a traditional oriental therapy, that has been gradually accepted worldwide. This work aimed to reveal whether the serotonin (5-hydroxytryptamine, 5-HT) released from MCs plays an important role in this process, which has a controversial effect in the mechanism of pain. METHODS: In vivo tests, a 20-min session of AP was applied at Zusanli acupuncture point (acupoint) of acute ankle arthritis rats. Pain thresholds of the injured hindpaw were assessed to reflect the pain state, and the targeting substances in the interstitial space of the treated acupoint were sampled by microdialysis. In vitro experiments, exogenous 5-HT (exo-5-HT) was introduced to mediate adenosine triphosphate (ATP) release from cultured MCs. RESULTS: Needling promoted 5-HT accumulation at the Zusanli acupoint, which was prevented by sodium cromolyn. AP's analgesic effect was suppressed by the inhibition of 5-HT receptors at the acupoint, especially 5-HT1A subtype. In vitro tests, mechanical perturbation mimicking needling stimulation induced MCs to release 5-HT. 1 µM and 10 µM of exo-5-HT facilitated ATP release, which was restrained by blocking of 5-HT1 receptors rather than 5-HT3 receptors. As 5-HT, ATP and adenosine were also transiently accumulated in the treated acupoint during needling. Promoting ATP hydrolysis or activation adenosine A1 receptors duplicated AP analgesic effect. Finally, the inhibition of ATP receptors by suramin or pyridoxal phosphate-6-azo tetrasodium salt hydrate (PPADS) prevented AP analgesic effect. CONCLUSIONS: Our results suggest that MC-associated 5-HT release at acupoints contributes to AP analgesia, and the mediation of ATP secretion through 5-HT1A receptors might be the underlying mechanism at play. ATP could facilitate adenosine production or the propagation of needling signals.


Asunto(s)
Analgesia por Acupuntura , Artritis , Enfermedad de Hashimoto , Animales , Ratas , Adenosina Trifosfato , Serotonina , Puntos de Acupuntura , Mastocitos , Adenosina , Analgésicos
2.
Cells ; 11(5)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269431

RESUMEN

This review summarizes experimental evidence indicating that subcutaneous mast cells are involved in the trigger mechanism of analgesia induced by acupuncture, a traditional oriental therapy, which has gradually become accepted worldwide. The results are essentially based on work from our laboratories. Skin mast cells are present at a high density in acupuncture points where fine needles are inserted and manipulated during acupuncture intervention. Mast cells are sensitive to mechanical stimulation because they express multiple types of mechanosensitive channels, including TRPV1, TRPV2, TRPV4, receptors and chloride channels. Acupuncture manipulation generates force and torque that indirectly activate the mast cells via the collagen network. Subsequently, various mediators, for example, histamine, serotonin, adenosine triphosphate and adenosine, are released from activated mast cells to the interstitial space; they or their downstream products activate the corresponding receptors situated at local nerve terminals of sensory neurons in peripheral ganglia. The analgesic effects are thought to be generated via the reduced electrical activities of the primary sensory neurons. Alternatively, these neurons project such signals to pain-relevant regions in spinal cord and/or higher centers of the brain.


Asunto(s)
Puntos de Acupuntura , Analgesia , Humanos , Mastocitos , Dolor , Células Receptoras Sensoriales
3.
J Integr Med ; 19(2): 144-157, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33353843

RESUMEN

OBJECTIVE: The present study investigated how mild moxibustion treatment affects the intestinal microbiome and expression of NLRP3-related immune factors in a rat model of intestinal mucositis (IM) induced with 5-fluorouracil (5-Fu). METHODS: Forty male Sprague-Dawley rats were randomly divided into control, chemotherapy, moxibustion and probiotics groups. The IM rat model was established by intraperitoneal injection of 5-Fu. Mild moxibustion treatment and intragastric probiotic administration were provided once daily for 15 days. Tissue morphology, serum levels of inflammatory factors and the expression levels of tight junction proteins, caspase-1, gasdermin D and NLRP3 were evaluated in colon tissue, through hematoxylin and eosin staining, electron microscopy, enzyme-linked immunosorbent assay, Western blotting, quantitative real-time reverse transcription polymerase chain reaction and immunofluorescence. Gut microbiome profiling was conducted through 16S rRNA amplicon sequencing. RESULTS: Moxibustion and probiotic treatments significantly increased the expression levels of tight junction proteins, reduced cell apoptosis and the expression levels of caspase-1, gasdermin D and NLRP3; they also decreased the serum levels of tumor necrosis factor-α, interleukin (IL)-6, IL-1ß and IL-18, while increasing serum levels of IL-10. Moxibustion and probiotic treatments also corrected the reduction in α-diversity and ß-diversity in IM rats, greatly increased the proportion of the dominant bacterial genus Lactobacillus and reduced the abundance of the genera Roseburia and Escherichia in chemotherapy-treated rats to levels observed in healthy animals. We also found that these dominant genera were firmly correlated with the regulation of pyroptosis-associated proteins and inflammatory factors. Finally, moxibustion and probiotic treatments elicited similar effects in regulating intestinal host-microbial homeostasis and the expression of NLRP3 inflammasome-related factors. CONCLUSION: Moxibustion exerts its therapeutic effect on IM by ameliorating mucosal damage and reducing inflammation. Moreover, moxibustion modulates the gut microbiota, likely via decreasing the expression levels of the NLRP3 inflammasome.


Asunto(s)
Microbioma Gastrointestinal , Moxibustión , Mucositis , Animales , Fluorouracilo , Inflamasomas , Mucosa Intestinal , Masculino , Mucositis/inducido químicamente , Mucositis/terapia , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Ribosómico 16S , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA