Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Biol ; 32(3): 508-517.e3, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34875231

RESUMEN

During growth and morphogenesis, plant cells respond to mechanical stresses resulting from spatiotemporal changes in the cell wall that bear high internal turgor pressure. Microtubule (MT) arrays are reorganized to align in the direction of maximal tensile stress, presumably reinforcing the local cell wall by guiding the synthesis of cellulose. However, how mechanical forces regulate MT reorganization remains largely unknown. Here, we demonstrate that mechanical signaling that is based on the Catharanthus roseus RLK1-like kinase (CrRLK1L) subfamily receptor kinase FERONIA (FER) regulates the reorganization of cortical MT in cotyledon epidermal pavement cells (PCs) in Arabidopsis. Recessive mutations in FER compromised MT responses to mechanical perturbations, such as single-cell ablation, compression, and isoxaben treatment, in these PCs. These perturbations promoted the activation of ROP6 guanosine triphosphatase (GTPase) that acts directly downstream of FER. Furthermore, defects in the ROP6 signaling pathway negated the reorganization of cortical MTs induced by these stresses. Finally, reduction in highly demethylesterified pectin, which binds the extracellular malectin domains of FER and is required for FER-mediated ROP6 activation, also impacted mechanical induction of cortical MT reorganization. Taken together, our results suggest that the FER-pectin complex senses and/or transduces mechanical forces to regulate MT organization through activating the ROP6 signaling pathway in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , GTP Fosfohidrolasas/metabolismo , Morfogénesis , Pectinas/metabolismo , Fosfotransferasas/genética , Transducción de Señal/fisiología
2.
J Food Biochem ; 45(9): e13878, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34337770

RESUMEN

Fruit sweetness being an important factor of organoleptic quality directly affects the consumers' preferences for fresh fruit consumption, and is influenced by the composition and quantity of sugars. In this study, four soluble sugars (sucrose, fructose, glucose, and sorbitol) were identified and quantified in plum fruits cv. 'Huangguan' at four different maturity stages (fruitlet, green, veraison, and mature stage). The results revealed that sucrose and glucose are major soluble sugar components at the fruitlet and mature stages, respectively. RNA-Seq analysis was carried out and 6,778 differentially expressed genes (DEGs) were identified, including 121 genes involved in sugar metabolism. Furthermore, a total of 39 transcripts of 8 gene families encoding key enzymes related to the metabolism and accumulation of soluble sugars were separately identified. ERD6L (gene 103322904) was involved in keeping a balance of glucose between the inside and outside of vacuole. SS (gene 103333990) and SDH (gene 103335104) regulated the accumulation of fructose at the green stage. SDH (gene 103335104) controlled the degradation of sorbitol at the green stage. SS (gene 103333990) and PFK (gene 103333391) regulated the degradation of sucrose at the early stages of fruit development. Moreover, NINV (gene 103331108) regulated the accumulation of total sugar in plum. Genes 103321334 and 103335689 were important bZIP transcription factors that regulate the accumulation of glucose and fructose in fruits. Twelve DEGs were selected and validated to observe the relative accuracy of transcriptome sequencing data using qRT-PCR. Gene expression patterns were consistent between qRT-PCR and RNA-Seq data, indicating the reliability of RNA-Seq data. PRACTICAL APPLICATIONS: The results of this study provided new insights into comprehensive understanding of the genetic control of sugar metabolism and accumulation in plum fruits.


Asunto(s)
Prunus domestica , Frutas/genética , Humanos , Reproducibilidad de los Resultados , Azúcares , Transcriptoma/genética
3.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071242

RESUMEN

Organic acids are key components that determine the taste and flavor of fruits and play a vital role in maintaining fruit quality and nutritive value. In this study, the fruits of two cultivars of passion fruit Yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) were harvested at five different developmental stages (i.e., fruitlet, green, veraison, near-mature and mature stage) from an orchard located in subtropical region of Fujian Province, China. The contents of six organic acids were quantified using ultra-performance liquid chromatography (UPLC), activities of citric acid related enzymes were determined, and expression levels of genes involved in citric acid metabolism were measured by quantitative real-time PCR (qRT-PCR). The results revealed that citric acid was the predominant organic acid in both cultivars during fruit development. The highest citric acid contents were observed in both cultivars at green stage, which were reduced with fruit maturity. Correlation analysis showed that citrate synthase (CS), cytosolic aconitase (Cyt-ACO) and cytosolic isocitrate dehydrogenase (Cyt-IDH) may be involved in regulating citric acid biosynthesis. Meanwhile, the PeCS2, PeACO4, PeACO5 and PeIDH1 genes may play an important role in regulating the accumulation of citric acid. This study provides new insights for future elucidation of key mechanisms regulating organic acid biosynthesis in passion fruit.


Asunto(s)
Ácido Cítrico/análisis , Frutas/química , Frutas/genética , Compuestos Orgánicos/análisis , Passiflora/química , Passiflora/genética , China , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Isocitrato Deshidrogenasa , Valor Nutritivo , Passiflora/crecimiento & desarrollo , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA