Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2020: 1817635, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411319

RESUMEN

Crystal adhesion is an important link in the formation of kidney stones. This study investigated and compared the adhesion differences between nano-calcium oxalate monohydrate (COM) and human renal proximal tubule epithelial (HK-2) cells before and after treatment with tea polysaccharides (TPSs) TPS0, TPS1, TPS2, and TPS3 with molecular weights of 10.88, 8.16, 4.82, and 2.31 kDa, respectively. TPS treatment effectively reduced the damage of COM to HK-2 cells, thereby resulting in increased cell activity, decreased release of lactate dehydrogenase, cell morphology recovery, decreased level of reactive oxygen species, increased mitochondrial membrane potential, increased lysosomal integrity, decreased expression of adhesion molecule osteopontin and eversion of phosphatidylserine, and decreased crystal adhesion. Among the TPSs, TPS2 with moderate molecular weight had the best protective effect on cells and the strongest effect on the inhibition of crystal adhesion. Thus, TPS2 may be a potential anticalculus drug.


Asunto(s)
Oxalato de Calcio/farmacología , Células Epiteliales/citología , Nanopartículas/química , Polisacáridos/farmacología , Té/química , Adhesión Celular/efectos de los fármacos , Línea Celular , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalización , Células Epiteliales/efectos de los fármacos , Células Epiteliales/ultraestructura , Humanos , L-Lactato Deshidrogenasa/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Modelos Biológicos , Peso Molecular , Osteopontina/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Oxid Med Cell Longev ; 2020: 2198976, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411321

RESUMEN

Endocytosis is a protective mechanism of renal epithelial cells to eliminate retained crystals. This research investigated the endocytosis of 100 nm calcium oxalate monohydrate crystals in human kidney proximal tubular epithelial (HK-2) cells before and after repair by four kinds of tea polysaccharides with molecular weights (MWs) of 10.88 (TPS0), 8.16 (TPS1), 4.82 (TPS2), and 2.31 kDa (TPS3), respectively. When HK-2 cells were repaired by TPSs after oxalic acid injury, the cell viability, wound healing ability, mitochondrial membrane potential, percentage of cells with endocytosed crystals, and dissolution rate of the endocytosed crystals increased; the cell morphology recovered; and the reactive oxygen level and lactate dehydrogenase release decreased. Most of the endocytosed crystals were found in the lysosomes. The repair effects of the four TPSs were ranked in the following order: TPS2>TPS1>TPS3>TPS0. TPS2 with moderate MW presented the optimal repair ability and strongest ability to promote endocytosis.


Asunto(s)
Oxalato de Calcio/metabolismo , Endocitosis , Nanopartículas/química , Polisacáridos/farmacología , Té/química , Línea Celular , Forma de la Célula/efectos de los fármacos , Endocitosis/efectos de los fármacos , Fluorescencia , Humanos , L-Lactato Deshidrogenasa/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas/efectos de los fármacos
3.
Int J Nanomedicine ; 14: 4277-4292, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31239679

RESUMEN

Background: Kidney stone formation is closely related to renal epithelial cell damage and the adhesion of calcium oxalate crystals to cells. Methods: In this research, the adhesion of human kidney proximal tubular epithelial cells (HK-2) to calcium oxalate monohydrate crystals with a size of approximately 100 nm was studied. In addition, the inhibition of crystal adhesion by four tea polysaccharides (TPS0, TPS1, TPS2, and TPS3) with the molecular weights of 10.88, 8.16, 4.82, and 2.31 kDa, respectively were compared. Results: When oxalic acid-damaged HK-2 cells were repaired, cell viability increased. By contrast, reactive oxygen species level, phosphatidylserine eversion, and osteopontin expression decreased, thus indicating that tea polysaccharides have a repairing effect on damaged HK-2 cells. Moreover, after repairing the damaged cells, the amount of adherent crystals was reduced. The repair effect of tea polysaccharides is closely related to molecular weight, and TPS2 with the moderate molecular weight displayed the best repair effect. Conclusion: These results suggest that tea polysaccharides, especially TPS2, may inhibit the formation and recurrence of calcium oxalate kidney stones.


Asunto(s)
Oxalato de Calcio/farmacología , Polisacáridos/farmacología , Té/química , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Cristalización , Fluorescencia , Humanos , Nanopartículas/química , Osteopontina/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA