Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytochemistry ; 211: 113681, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37080413

RESUMEN

The sesquiterpene ß-bisabolene possessing R and S configurations is commonly found in plant essential oils with antimicrobial and antioxidant activities. Here, we report the cloning and functional characterization of a (R)-ß-bisabolene synthase gene (CcTPS2) from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. The biochemical function of CcTPS2 catalyzing the cyclization of farnesyl diphosphate to form a single product (R)-ß-bisabolene was characterized through an engineered Escherichia coli producing diverse polyprenyl diphosphate precursors and in vitro enzyme assay, indicating that CcTPS2 was a high-fidelity (R)-ß-bisabolene synthase. The production of (R)-ß-bisabolene in an engineered E. coli strain harboring the exogenous mevalonate pathway, farnesyl diphosphate synthase and CcTPS1 genes was 17 mg/L under shaking flask conditions. Ultimately, 120 mg of purified (R)-ß-bisabolene was obtained from the engineered E. coli, and its structure was elucidated by detailed spectroscopic analyses (including 1D and 2D NMR, and specific rotation). Four chimeric enzymes were constructed through domain swapping, which altered the product outcome, indicating the region important for substrate and product specificity. In addition, (R)-ß-bisabolene exhibited anti-adipogenic activity in the model organism Caenorhabditis elegans and antibacterial activity selectively against Gram-positive bacteria.


Asunto(s)
Transferasas Alquil y Aril , Lamiaceae , Plantas Medicinales , Sesquiterpenos , Plantas Medicinales/metabolismo , Escherichia coli/genética , Sesquiterpenos/farmacología , Sesquiterpenos/metabolismo , Antibacterianos/farmacología , Lamiaceae/química
2.
Chem Biodivers ; 18(7): e2100342, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34148286

RESUMEN

Paris polyphylla Smith var. yunnanensis (Franch.) Hand. - Mazz. is a precious traditional Chinese medicine, and steroidal saponins are its major bioactive constituents possessing extensive biological activities. Squalene synthase (SQS) catalyzes the first dedicated step converting two molecular of farnesyl diphosphate (FDP) into squalene, a key intermediate in the biosynthetic pathway of steroidal saponins. In this study, a squalene synthase gene (PpSQS1) was cloned and functionally characterized from P. polyphylla var. yunnanensis, representing the first identified SQS from the genus Paris. The open reading frame of PpSQS1 is 1239 bp, which encodes a protein of 412 amino acids showing high similarity to those of other plant SQSs. Expression of PpSQS1 in Escherichia coli resulted in production of soluble recombinant proteins. Gas chromatography-mass spectrometry analysis showed that the purified recombinant PpSQS1 protein could produce squalene using FDP as a substrate in the in vitro enzymatic assay. qRT-PCR analysis indicated that PpSQS1 was highly expressed in rhizomes, consistent with the dominant accumulation of steroidal saponins there, suggesting that PpSQS1 is likely involved in the biosynthesis of steroidal saponins in the plant. The findings lay a foundation for further investigation on the biosynthesis and regulation of steroidal saponins, and also provide an alternative gene for manipulation of steroid production using synthetic biology.


Asunto(s)
Farnesil Difosfato Farnesil Transferasa/metabolismo , Melanthiaceae/enzimología , Clonación Molecular , Farnesil Difosfato Farnesil Transferasa/genética , Medicina Tradicional China , Alineación de Secuencia , Análisis de Secuencia de Proteína
3.
New Phytol ; 229(3): 1740-1754, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32929734

RESUMEN

Eupatorium adenophorum is a malignant invasive plant possessing extraordinary defense potency, but its chemical weaponry and formation mechanism have not yet been extensively investigated. We identified six cadinene sesquiterpenes, including two volatiles (amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol) and four nonvolatiles (9-oxo-10,11-dehydroageraphorone, muurol-4-en-3,8-dione, 9-oxo-ageraphorone and 9ß-hydroxy-ageraphorone), as the major constitutive and inducible chemicals of E. adenophorum. All cadinenes showed potent antifeedant activity against a generalist insect Spodoptera exigua, indicating that they have significant defensive roles. We cloned and functionally characterized a sesquiterpene synthase from E. adenophorum (EaTPS1), catalyzing the conversion of farnesyl diphosphate to amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol, which were purified from engineered Escherichia coli and identified by extensive nuclear magnetic resonance (NMR) spectroscopy. EaTPS1 was highly expressed in the aboveground organs, which was congruent with the dominant distribution of cadinenes, suggesting that EaTPS1 is likely involved in cadinene biosynthesis. Mechanical wounding and methyl jasmonate negatively regulated EaTPS1 expression but caused the release of amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol. Nicotiana benthamiana transiently expressing EaTPS1 also produced amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol, and showed enhanced defense function. The findings presented here uncover the role and formation of the chemical defense mechanism of E. adenophorum - which probably contributes to the invasive success of this plant - and provide a tool for manipulating the biosynthesis of biologically active cadinene natural products.


Asunto(s)
Ageratina , Sesquiterpenos , Extractos Vegetales , Nicotiana
4.
Chem Biodivers ; 17(7): e2000219, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32352210

RESUMEN

(-)-5-Epieremophilene, an epimer of the versatile sesquiterpene (+)-valencene, is an inaccessible natural product catalyzed by three sesquiterpene synthases (SmSTPSs1-3) of the Chinese medicinal herb Salvia miltiorrhiza, and its biological activity remains less explored. In this study, three metabolically engineered Escherichia coli strains were constructed for (-)-5-epieremophilene production with yields of 42.4-76.0 mg/L in shake-flask culture. Introducing an additional copy of farnesyl diphosphate synthase (FDPS) gene through fusion expression of SmSTPS1-FDPS or dividing the FDP synthetic pathway into two modules resulted in significantly improved production, and ultimately 250 mg of (-)-5-epieremophilene were achieved. Biological assay indicated that (-)-5-epieremophilene showed significant antifeedant activity against Helicoverpa armigera (EC50 =1.25 µg/cm2 ), a common pest of S. miltiorrhiza, implying its potential defensive role in the plant. The results provided an ideal material supply for studying other potential biological activities of (-)-5-epieremophilene, and also a strategy for manipulating terpene production in engineered E. coli using synthetic biology.


Asunto(s)
Escherichia coli/metabolismo , Insecticidas/metabolismo , Ingeniería Metabólica , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Animales , Escherichia coli/química , Conducta Alimentaria/efectos de los fármacos , Insecticidas/química , Insecticidas/farmacología , Lepidópteros/efectos de los fármacos , Estructura Molecular , Salvia miltiorrhiza/enzimología , Sesquiterpenos/química , Sesquiterpenos/farmacología
5.
Chin J Nat Med ; 17(12): 892-899, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31882042

RESUMEN

Obesity that is highly associated with numerous metabolic diseases has become a global health issue nowdays. Plant sesterterpenoids are an important group of natural products with great potential; thus, their bioactivities deserve extensive exploration. RNA-seq analysis indicated that leucosceptroid B, a sesterterpenoid previously discovered from the glandular trichomes of Leucosceptrum canum, significantly regulated the expression of 10 genes involved in lipid metabolism in Caenorhabditis elegans. Furthermore, leucosceptroid B was found to reduce fat storage, and downregulate the expression of two stearoyl-CoA desaturase (SCD) genes fat-6 and fat-7, and a fatty acid elongase gene elo-2 in wild-type C. elegans. In addition, leucosceptroid B significantly decreased fat accumulation in both fat-6 and fat-7 mutant worms but did not affect the fat storage of fat-6; fat-7 double mutant. These findings indicated that leucosceptroid B reduced fat storage depending on the downregulated expression of fat-6, fat-7 and elo-2 and thereby inhibiting the biosynthesis of the corresponding unsaturated fatty acid. These findings provide new insights into the development and utilization of plant sesterterpenoids as potential antilipemic agents.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/genética , Lamiaceae/química , Sesterterpenos/farmacología , Tricomas/química , Animales , Caenorhabditis elegans/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA