Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PeerJ ; 7: e7605, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31528508

RESUMEN

Salvia miltiorrhiza is one of the most commonly used traditional Chinese medicine materials. It contains important bioactive phenolic compounds, such as salvianolic acids, flavonoids and anthocyanins. Elucidation of phenolic compound biosynthesis and its regulatory mechanism is of great significance for S. miltiorrhiza quality improvement. Laccases (LACs) are multicopper-containing enzymes potentially involved in the polymerization of phenolic compounds. So far, little has been known about LAC genes in S. miltiorrhiza. Through systematic investigation of the whole genome sequence and transcriptomes of S. miltiorrhiza, we identified 65 full-length SmLAC genes (SmLAC1-SmLAC65). Phylogenetic analysis showed that 62 of the identified SmLACs clustered with LACs from Arabidopsis and Populus trichocarpa in seven clades (C1-C7), whereas the other three fell into one S. miltiorrhiza-specific clade (C8). All of the deduced SmLAC proteins contain four conserved signature sequences and three typical Cu-oxidase domains, and gene structures of most LACs from S. miltiorrhiza, Arabidopsis and P. trichocarpa were highly conserved, however SmLACs encoding C8 proteins showed distinct intron-exon structures. It suggests the conservation and diversity of plant LACs in gene structures. The majority of SmLACs exhibited tissue-specific expression patterns, indicates manifold functions of SmLACs played in S. miltiorrhiza. Analysis of high-throughput small RNA sequences and degradome data and experimental validation using the 5' RACE method showed that 23 SmLACs were targets of Smi-miR397. Among them, three were also targeted by Smi-miR408. It suggests the significance of miR397 and miR408 in posttranscriptional regulation of SmLAC genes. Our results provide a foundation for further demonstrating the functions of SmLACs in the production of bioactive phenolic compounds in S. miltiorrhiza.

2.
Front Plant Sci ; 8: 1409, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861095

RESUMEN

Carthami flos, the dried petal of safflower (Carthamus tinctorius L.) has been widely used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases, in which quinochalcone glucosides such as hydrosafflower yellow A (HSYA), carthamin are uniquely present and have been identified as active compounds. In the present study, through sequencing of a safflower floret cDNA library and subsequent microarray analysis, we found 23 unigenes (5 PALs, 1 C4Hs, 5 4CLs, 6 CHSs, 2 CHIs, 2 DFRs, 2 FLSs) involved in flavonoid pathway, of which 4 were up-regulated differentially during quinochalcone glucosides accumulation with the floret developing stage. The up-regulated genes were verified by PCR methods. Considering chalcone synthase are entry enzyme in flavonoid biosynthesis, CHS1 was focused on target gene to verify its function furtherly. Bioinformation analysis showed that CHS1 shared 86.94% conserved residues with CHS from other plants. Subcellular localization showed that CtCHS1 was localized in cytoplasm in onion epidermal cells. The transgenic safflower plant with overexpression CtCHS1 by Agrobacterium-mediated pollen-tube pathway method was firstly generated. The results present that expression of PAL2, PAL3, CHS1, CHS4, CHS6 increased and expression of CHI1 and CHI2 decreased in the transgenic plant floret. Meanwhile, the accumulation of quinochalcone glucosides increased by ∼20-30% and accumulation of quercetin-3-ß-D-glucoside and quercetin decreased by 48 and 63% in the transgenic plant floret. These results suggested that CtCHS1 played an important role in quinochalcone glucosides biosynthesis rather than flavonol biosynthesis. These results also demonstrated that the pollen-tube pathway method was an efficient method for gene transformation in safflower. Our study will provide a deep understanding of potential synthetic genes involved in quinochalcone biosynthetic pathway.

3.
Sci Rep ; 7: 44622, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28304398

RESUMEN

Salvia miltiorrhiza is a well-known material of traditional Chinese medicine. Understanding the regulatory mechanisms of phenolic acid biosynthesis and metabolism are important for S. miltiorrhiza quality improvement. We report here that S. miltiorrhiza contains 19 polyphenol oxidases (PPOs), forming the largest PPO gene family in plant species to our knowledge. Analysis of gene structures and sequence features revealed the conservation and divergence of SmPPOs. SmPPOs were differentially expressed in plant tissues and eight of them were predominantly expressed in phloem and xylem, indicating that some SmPPOs are functionally redundant, whereas the others are associated with different physiological processes. Expression patterns of eighteen SmPPOs were significantly altered under MeJA treatment, and twelve were yeast extract and Ag+-responsive, suggesting the majority of SmPPOs are stress-responsive. Analysis of high-throughput small RNA sequences and degradome data showed that miR1444-mediated regulation of PPOs existing in P. trichocarpa is absent from S. miltiorrhiza. Instead, a subset of SmPPOs was posttranscriptionally regulated by a novel miRNA, termed Smi-miR12112. It indicates the specificity and significance of miRNA-mediated regulation of PPOs. The results shed light on the regulation of SmPPO expression and suggest the complexity of SmPPO-associated phenolic acid biosynthesis and metabolism.


Asunto(s)
Catecol Oxidasa/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Familia de Multigenes , Salvia miltiorrhiza/enzimología , Salvia miltiorrhiza/genética , Transcripción Genética , Acetatos/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Catecol Oxidasa/química , Catecol Oxidasa/metabolismo , Clonación Molecular , Secuencia Conservada/genética , Ciclopentanos/farmacología , Exones/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Variación Genética , Intrones/genética , MicroARNs/metabolismo , Oxilipinas/farmacología , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Salvia miltiorrhiza/efectos de los fármacos , Especificidad de la Especie , Transcripción Genética/efectos de los fármacos
4.
BMC Genomics ; 16: 1087, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26689421

RESUMEN

BACKGROUND: Gibberellin (GA), a classical phytohormone, plays significant roles in plant growth and development. It shares the important intermediate diphosphate precursor, GGPP, with the main lipophilic bioactive components, diterpenoid tanshinones in Salvia miltiorrhiza Bunge, one of the most important Traditional Chinese Medicine materials and an emerging model medicinal plant. Analysis of GA metabolism and regulation may help to demonstrate the biological functions of GAs and the crosstalk between GA metabolism and tanshinone biosynthesis in S. miltiorrhiza. However, genes involved in the conversion of ent-kaurene to GAs have not been systematically studied. RESULTS: Through genome-wide prediction and molecular cloning, twenty two candidate gibberellin metabolism pathway genes were systematically identified for the first time. It includes a SmKO, two SmKAOs, six SmGA20oxs, two SmGA3oxs and eleven SmGA2oxs, of which twenty genes are novel. The deduced proteins showed sequence conservation and divergence. Gibberellin metabolism pathway genes exhibited tissue-specific expression patterns and responded differentially to exogenous GA3 treatment, indicating differential regulation of gibberellin metabolism in different tissue types in S. miltiorrhiza. SmKAO1, SmKAO2, SmGA2ox2, and SmGA2ox4-SmGA2ox7 were significantly up-regulated; SmGA20ox2, SmGA3ox1, SmGA2ox1, SmGA2ox8, SmGA2ox10 and SmGA2ox11 were significantly down-regulated; while the responses of many other genes varied among different tissue-types and time-points of GA3 treatment, suggesting the complexity of feedback regulation. Tanshinone biosynthesis-related genes, such as SmCPS1 and SmKSL1, were up-regulated in response to GA3 treatment. Among the 22 identified genes, nine responded to yeast extract and Ag(+)-treatment in S. miltiorrhiza hairy roots. Moreover, tissue-specifically expressed splice variants were identified for SmKO, SmGA20ox3, SmGA2ox3 and SmGA2ox11, of which SmKOv1, SmGA20ox3v and SmGA2ox11v1 were GA3-responsive, suggesting the importance of alternative splicing in regulating GA metabolism. CONCLUSIONS: The results show tissue-specifically expressed, feedback-regulated, stress-responsive and alternatively spliced novel genes and reveal multiple layer regulation of GA metabolism and crosstalk between gibberellin metabolism and tanshinone biosynthesis in S. miltiorrhiza.


Asunto(s)
Clonación Molecular/métodos , Perfilación de la Expresión Génica/métodos , Giberelinas/metabolismo , Proteínas de Plantas/genética , Salvia miltiorrhiza/genética , Empalme Alternativo , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Especificidad de Órganos , Proteínas de Plantas/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Salvia miltiorrhiza/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA