Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 58, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383407

RESUMEN

Acetoin, a versatile platform chemical and popular food additive, poses a challenge to the biosafety strain Bacillus subtilis when produced in high concentrations due to its intrinsic toxicity. Incorporating the PHB synthesis pathway into Bacillus subtilis 168 has been shown to significantly enhance the strain's acetoin tolerance. This study aims to elucidate the molecular mechanisms underlying the response of B. subtilis 168-phaCBA to acetoin stress, employing transcriptomic and metabolomic analyses. Acetoin stress induces fatty acid degradation and disrupts amino acid synthesis. In response, B. subtilis 168-phaCBA down-regulates genes associated with flagellum assembly and bacterial chemotaxis, while up-regulating genes related to the ABC transport system encoding amino acid transport proteins. Notably, genes coding for cysteine and D-methionine transport proteins (tcyB, tcyC and metQ) and the biotin transporter protein bioY, are up-regulated, enhancing cellular tolerance. Our findings highlight that the expression of phaCBA significantly increases the ratio of long-chain unsaturated fatty acids and modulates intracellular concentrations of amino acids, including L-tryptophan, L-tyrosine, L-leucine, L-threonine, L-methionine, L-glutamic acid, L-proline, D-phenylalanine, L-arginine, and membrane fatty acids, thereby imparting acetoin tolerance. Furthermore, the supplementation with specific exogenous amino acids (L-alanine, L-proline, L-cysteine, L-arginine, L-glutamic acid, and L-isoleucine) alleviates acetoin's detrimental effects on the bacterium. Simultaneously, the introduction of phaCBA into the acetoin-producing strain BS03 addressed the issue of insufficient intracellular cofactors in the fermentation strain, resulting in the successful production of 70.14 g/L of acetoin through fed-batch fermentation. This study enhances our understanding of Bacillus's cellular response to acetoin-induced stress and provides valuable insights for the development of acetoin-resistant Bacillus strains.


Asunto(s)
Acetoína , Bacillus subtilis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Acetoína/metabolismo , Ácido Glutámico/metabolismo , Fermentación , Perfilación de la Expresión Génica , Arginina , Proteínas Portadoras/genética , Prolina/metabolismo
2.
Nat Prod Res ; 38(1): 91-96, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-35921492

RESUMEN

Two new anthraquinone derivatives sapranquinones A and B (1 and 2) together with two known biogenetically related anthraquinone derivatives (3 and 4) were isolated from the stems of Saprosma crassipes H. S. Lo. The structures of these compounds were elucidated using comprehensive spectroscopic methods. Compounds 1-4 were evaluated for their antibacterial activities and compounds 1 and 3 had a broad spectrum antibacterial activity against Staphylococcus albus, Escherichia coli, Bacillus cereus, Micrococcus tetragenus, and Micrococcus luteus with MIC values ranging from 1.25 to 5 µg/mL.


Asunto(s)
Antraquinonas , Rubiaceae , Antraquinonas/química , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Análisis Espectral , Rubiaceae/química , Escherichia coli , Pruebas de Sensibilidad Microbiana
3.
Altern Ther Health Med ; 29(8): 209-213, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37632948

RESUMEN

Objective: To investigate the effects of systematic pregnancy management on labor and maternal and infant outcomes in gestational diabetes mellitus patients (GDM). Methods: From February 2020 to December 2021, 116 patients who were diagnosed with GDM at the first hospital of Hebei medical university were enrolled in this prospective study. According to the random number table, patients were divided into the control group (n = 58, routine nursing) and the intervention group (n = 58, systematic pregnancy management). Results: After treatment, the blood glucose levels of both groups decreased compared to that measured before treatment, and the blood glucose levels in the intervention group were lower than those in the control group (P < .05). After treatment, the lipid profile cholesterol levels of both groups decreased compared to those measured before treatment. However, the lipid profile cholesterol levels were lower in the intervention group than those in the control group (P < .05). The first, second, and third stages of labor and total labor time in the intervention group were lower than those in the control group (P < .05). The rate of natural delivery in the intervention group was higher than that in the control group, while the rate of cesarean section was lower than that in the control group (P < .05). Conclusion: Systematic pregnancy management can reduce the level of blood glucose and improve lipid metabolism in patients with GDM.


Asunto(s)
Diabetes Gestacional , Embarazo , Humanos , Lactante , Femenino , Diabetes Gestacional/terapia , Diabetes Gestacional/diagnóstico , Resultado del Embarazo , Glucemia/metabolismo , Cesárea , Estudios Prospectivos , Lípidos , Colesterol
4.
Environ Sci Pollut Res Int ; 30(42): 96272-96289, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37566326

RESUMEN

Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 µA cm-2, and power density (Pmax) of 35.6 µW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.


Asunto(s)
Electricidad , Residuos Industriales , Aceite de Palma/análisis , Residuos Industriales/análisis , Malasia , Análisis de la Demanda Biológica de Oxígeno , Aceites de Plantas/química , Eliminación de Residuos Líquidos
5.
Sci Total Environ ; 892: 164579, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37269993

RESUMEN

Dissimilatory sulfate reduction (DSR) is the key sulfur cycle that transforms sulfate to sulfide. This process leads to odour issues in wastewater treatment. However, few studies have focused on DSR during treating food processing wastewater with high sulfate. This study investigated DSR microbial population and functional genes in an anaerobic biofilm reactor (ABR) treating tofu processing wastewater. The tofu processing wastewater is a common food processing wastewater in Asia. The full-scale ABR was operated for over 120 days in a tofu and tofu-related products manufacturing factory. Mass balance calculations based on the reactor performance indicated that 79.6-85.1 % of the sulfate was transformed into sulfide irrelevant to dissolved oxygen supplementation. Metagenomic analysis revealed 21 metagenome-assembled genomes (MAGs) containing enzymes encoding DSR. The biofilm contained the complete functional genes of DSR pathway in the full-scale ABR, indicating that biofilm could process DSR independently. Comamonadaceae, Thiobacillus, Nitrosomonadales, Desulfatirhabdium butyrativorans, Desulfomonile tiedjei were the dominant DSR species in the ABR biofilm community. Dissolved oxygen supplementation directly inhibited DSR and mitigated HS- production. It was also found that Thiobacillus contained all the function genes encoding every necessary enzyme in DSR, and thus Thiobacillus distribution directly correlated to DSR and the ABR performance.


Asunto(s)
Alimentos de Soja , Thiobacillus , Aguas Residuales , Anaerobiosis , Reactores Biológicos/microbiología , Bacterias/genética , Bacterias/metabolismo , Thiobacillus/metabolismo , Sulfatos/metabolismo , Sulfuros/metabolismo , Oxidación-Reducción
6.
Medicine (Baltimore) ; 101(35): e30394, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36107541

RESUMEN

BACKGROUND: This study assessed the effectiveness of Yangxin Decoction (YXD) in the treatment of coronary heart disease (CHD) patients with angina pectoris (AP). METHODS: In this study, we systematically and comprehensively searched the PUBMED, EMBASE, Cochrane Library, CNKI, WANGFANG, and VIP databases from their establishment to June 1, 2022. Clinical randomized controlled trials of YXD for the management of AP in patients with CHD were considered for inclusion. The outcomes included the response rate of AP, response rate based on electrocardiogram, and the rate of nitroglycerin use. Two authors independently performed literature selection, data extraction, and methodological quality assessment. Any differences were resolved by a third author through a discussion. RESULTS: Nine trials involving 819 patients were included. The meta-analysis results showed that YXD significantly improved the response rate of AP (OR = 2.98, 95% CI: 1.96-4.55, I2 = 0%, P < .01) and the response rate based on the electrocardiogram (OR = 1.88, 95% CI: 1.28-2.78, I2 = 26%, P < .01), and significantly reduced the rate of nitroglycerin use (OR = 2.04, 95% CI: 1.19-3.52, I2 = 0%, P = .01). CONCLUSIONS: The results of this study showed that YXD was effective in the treatment of patients with AP of CHD. Further studies are required to confirm these results.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Angina de Pecho/tratamiento farmacológico , Enfermedad Coronaria/complicaciones , Enfermedad Coronaria/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Nitroglicerina/uso terapéutico
7.
Sci Total Environ ; 853: 158291, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36030848

RESUMEN

A major challenge for the restoration of the Lead-Zinc tailing pond in Karst areas lies in how to establish vegetation with less soil and restore the ecological functions of the substrate. In this study, a novel method, rhizosphere soil cover method (RSC), was applied to recover the vegetation at a Pb-Zn tailing pond in Karst areas. Two local tolerate plants, Miscanthus sinensis and Pueraria phaseoloides, were planted as pioneer species. Although 68 % of the tailing pond was not covered with soil, the vegetation coverage has reached over 90 % after restoration for three years. Compared with the natural revegetation process (vegetation coverage was <5 % after 20 years of natural succession), the revegetation in the tailing pond was accelerated by RSC and planting pioneer species. Both the plant's diversity and richness have significantly increased in the tailings pond during the restoration (p < 0.05). The important value indicators of M. sinensis and P. phaseoloides were the highest in the plant community, indicating the dominant role of these two plants in revegetation. Moreover, the total organic carbon, total nitrogen, total phosphorus, and total potassium in the tailings increased annually (p < 0.05), which demonstrated that the revegetation has improved the chemical properties in the substrate. In addition, the Shannon diversity index of bacteria in the tailings increased significantly from 4.11 to 5.51. The relative abundance of microbial genes related to carbon fixation and nitrogen fixation in the tailings increased by 17 % and 43 %, respectively. Meanwhile, the physicochemical properties, microbial community structure, and nutrient cycling function in the tailings without topsoil were improved more obviously than those in soils. It is thereby concluded that RSC is an efficient means for ecological restoration of the tailing ponds in Karst areas to improve the ecosystem structure and function of Pb-Zn tailings.


Asunto(s)
Microbiota , Contaminantes del Suelo , Suelo/química , Rizosfera , Plomo , Zinc , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Plantas , Nitrógeno/análisis , Fósforo , Carbono , Potasio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA