Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 175(4): e13962, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37343119

RESUMEN

The GRAS transcription factors play an indispensable role in plant growth and responses to environmental stresses. The GRAS gene family has extensively been explored in various plant species; however, the comprehensive investigation of GRAS genes in white lupin remains insufficient. In this study, bioinformatics analysis of white lupin genome revealed 51 LaGRAS genes distributed into 10 distinct phylogenetic clades. Gene structure analyses revealed that LaGRAS proteins were considerably conserved among the same subfamilies. Notably, 25 segmental duplications and a single tandem duplication showed that segmental duplication was the major driving force for the expansion of GRAS genes in white lupin. Moreover, LaGRAS genes exhibited preferential expression in young cluster root and mature cluster roots and may play key roles in nutrient acquisition, particularly phosphorus (P). To validate this, RT-qPCR analysis of white lupin plants grown under +P (normal P) and -P (P deficiency) conditions elucidated significant differences in the transcript level of GRAS genes. Among them, LaGRAS38 and LaGRAS39 were identified as potential candidates with induced expression in MCR under -P. Additionally, white lupin transgenic hairy root overexpressing OE-LaGRAS38 and OE-LaGRAS39 showed increased root growth, and P concentration in root and leaf compared to those with empty vector control, suggesting their role in P acquisition. We believe this comprehensive analysis of GRAS members in white lupin is a first step in exploring their role in the regulation of root growth, tissue development, and ultimately improving P use efficiency in legume crops under natural environments.


Asunto(s)
Lupinus , Fósforo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Biomaterials ; 178: 517-526, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29631784

RESUMEN

Selenite, one of the inorganic forms of selenium, is emerging as an attractive chemotherapeutic agent owing to its selectivity in eradicating cancer cells. Here we demonstrate a new formulation of nanomedicine based on selenous acid, which is mixed with lauric acid (a phase-change material with a melting point around 43 °C) and then loaded into the cavities of Au nanocages. The Au nanocages can serve as a carrier during cell endocytosis and then as a photothermal agent to melt the lauric acid upon the irradiation with a near-infrared laser, triggering the swift release of selenous acid. The photothermal and chemo therapies can also work synergistically, leading to enhanced destruction of cancer cells relative to normal cells. Our systematic study suggests that the impaired mitochondrial function arising from the ROS generated through combination treatment is responsible for the cell death. This study offers an appealing candidate that holds great promise for synergistic cancer treatment.


Asunto(s)
Oro/química , Hipertermia Inducida , Nanopartículas/química , Neoplasias/terapia , Fototerapia , Ácido Selenioso/farmacología , Células A549 , Animales , Muerte Celular/efectos de los fármacos , Terapia Combinada , Preparaciones de Acción Retardada , Liberación de Fármacos , Fluorescencia , Humanos , Espacio Intracelular/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Células 3T3 NIH , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA