Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 68(7): e2300343, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501770

RESUMEN

SCOPE: Iron deposition is frequently observed in alcoholic liver disease (ALD), which indicates a potential role of ferroptosis in its development. This study aims to explore the effects of quercetin on ferroptosis in ALD and elucidates the underlying mechanism involving the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs) mediated by protein kinase RNA-like endoplasmic reticulum kinase (PERK). METHODS AND RESULTS: C57BL/6J mice are fed either a regular or an ethanol-containing liquid diet (with 28% energy form ethanol) with or without quercetin supplementation (100 mg kg-1 BW) for 12 weeks. Ethanol feeding or treatment induced ferroptosis in mice and AML12 cells, which is associated with increased MAMs formation and PERK expression within MAMs. Quercetin attenuates these changes and protects against ethanol-induced liver injury. The antiferroptotic effect of quercetin is abolished by ferroptosis inducers, but mimicked by ferroptosis inhibitors and PERK knockdown. The study demonstrates that PERK structure, rather than its kinase activity (transfected with the K618A site mutation that inhibits kinase activity-ΔK plasmid or protein C terminal knockout-ΔC plasmid of PERK), mediates the enhanced MAMs formation and ferroptosis during the ethanol exposure. CONCLUSION: Quercetin ameliorates ethanol-induced liver injury by inhibiting ferroptosis via modulating PERK-dependent MAMs formation.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Ferroptosis , Ratones , Animales , Etanol/toxicidad , Quercetina/farmacología , Quercetina/metabolismo , Proteínas Quinasas , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Ratones Endogámicos C57BL , Retículo Endoplásmico/metabolismo
2.
Pest Manag Sci ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520319

RESUMEN

BACKGROUND: Ticks are blood-feeding ectoparasites with different host specificities and are capable of pathogen transmission. Iron regulatory proteins (IRPs) play crucial roles in iron homeostasis in vertebrates. However, their functions in ticks remain poorly understood. The aim of the present study was to investigate the characteristics, functions, molecular mechanisms, and the vaccine efficacy of IRP in the hard tick Haemaphysalis longicornis. RESULTS: The full-length complementary DNA of IRP from Haemaphysalis longicornis (HlIRP) was 2973 bp, including a 2772 bp open reading frame. It is expressed throughout three developmental stages (larvae, nymphs, and adult females) and in various tissues (salivary glands, ovaries, midgut, and Malpighian tubules). Recombinant Haemaphysalis longicornis IRP (rHlIRP) was obtained via a prokaryotic expression system and exhibited aconitase, iron chelation, radical-scavenging, and hemolytic activities in vitro. RNA interference-mediated IRP knockdown reduced tick engorgement weight, ovary weight, egg mass weight, egg hatching rate, and ovary vitellin content, as well as prolonging the egg incubation period. Proteomics revealed that IRP may affect tick reproduction and development through proteasome pathway-associated, ribosomal, reproduction-related, and iron metabolism-related proteins. A trial on rabbits against adult Haemaphysalis longicornis infestation demonstrated that rHlIRP vaccine could significantly decrease engorged weight (by 10%), egg mass weight (by 16%) and eggs hatching rate (by 22%) of ticks. The overall immunization efficacy using rHlIRP against adult females was 41%. CONCLUSION: IRP could limit reproduction and development in Haemaphysalis longicornis, and HlIRP was confirmed as a candidate vaccine antigen to impair tick iron metabolism and protect the host against tick infestation. © 2024 Society of Chemical Industry.

3.
J Ethnopharmacol ; 326: 117908, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38367931

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Goiters are enlargements of the thyroid gland and are a global public issue. Quemeiteng granule (QMTG) is a traditional Chinese medicine (TCM) formula used to treat goiter in Yunnan Province. However, the effectiveness and underlying mechanism of these treatments have not been fully elucidated. AIM OF THE STUDY: This study aimed to investigate the therapeutic effects of QMTG on goiter and the downstream regulatory mechanisms. MATERIALS AND METHODS: In this study, we first evaluated the antigoiter efficacy of QMTG through biochemical indices [body weight, thyroid coefficient, triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid stimulating hormone (TSH)] and hematoxylin-eosin (HE) staining in a Propylthiouracil (PTU)-induced model. Based on microRNA sequencing (miRNA-seq) and bioinformatics analysis, key miRNA was screened out. A dual-luciferase reporter assay was performed to confirm the transcriptional regulation of the target gene by the miRNA. The viability of rat thyroid microvascular endothelial cells (RTMECs) and human thyroid microvascular endothelial cells (HTMECs) was assessed using the CCK-8 assays. The migration and angiogenesis of RTMECs and HTMECs were visualized through tube formation and wound scratch assays. Proteins involved in angiogenesis and the ERK pathway were assessed via Western blotting. RESULTS: QMTG significantly increased body weight, decreased the thyroid coefficient, increased the levels of T3, T4, FT3 and FT4 and reduced TSH levels in rats with goiter. QMTG also promoted the morphological recovery of thyroid follicles. MiR-217-5p was identified as a key miRNA. Our studies revealed that miR-217-5p directly targets FGF2 and that QMTG promotes the recovery of thyroid hormone (TH) levels and morphological changes in the thyroid, suppresses thyroid microvascular endothelial cell vitality, tube formation and migration, and reduces the expression of VEGF, Ang-1 and VCAM-1 triggered by miR-217-5p, thereby inhibiting the Ras/MEK/ERK cascade through FGF2. CONCLUSIONS: Our experiments demonstrated that the QMTG had therapeutic effects on goiter. These effects were attributed to the inhibition of ERK pathway-induced proliferation and angiogenesis through the targeting of FGF2 by miR-217-5p.


Asunto(s)
Bocio , MicroARNs , Humanos , Ratas , Animales , Sistema de Señalización de MAP Quinasas , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Triyodotironina/farmacología , Tiroxina , Células Endoteliales/metabolismo , Angiogénesis , China , MicroARNs/genética , MicroARNs/metabolismo , Hormonas Tiroideas , Bocio/tratamiento farmacológico , Proliferación Celular , Tirotropina/metabolismo , Peso Corporal
4.
Phytochemistry ; 220: 113999, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38281703

RESUMEN

Five undescribed eudesmane methyl esters (1-5), three undescribed eudesmane-12,6-olides (6-8), and 21 known analogues (9-29) were isolated from the aerial part of Artemisia princeps Pamp. Their structures were established by detailed analysis of the NMR and HRESIMS data. The absolute configurations of 1-8 were determined based on single-crystal X-ray diffraction analysis and ECD calculations. Moreover, the inhibitory effects on LPS-induced NO production in BV-2 microglial cells of all the isolated compounds were assessed. Except for compounds 2, 4, 10, and 11, the others showed significant inhibitory activities, with IC50 values of 0.73-18.66 µM, wherein the potential structure-activity relationship was also discussed.


Asunto(s)
Artemisia , Sesquiterpenos de Eudesmano , Sesquiterpenos , Artemisia/química , Estructura Molecular , Sesquiterpenos/química , Relación Estructura-Actividad , Sesquiterpenos de Eudesmano/farmacología , Sesquiterpenos de Eudesmano/química
5.
J Cancer ; 14(14): 2608-2618, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779875

RESUMEN

5-Fluorouracil is an effective chemotherapeutic drug for gastric cancer. However, the acquisition of chemotherapeutic resistance remains a challenge in treatment. Melatonin can enhance the therapeutic effect of 5-fluorouracil; however, the underlying mechanisms are not well understood. We investigated the effects of combinations of melatonin and 5-fluorouracil on the proliferation, migration and invasion of gastric cancer cells. Melatonin significantly potentiated the 5-fluorouracil-mediated inhibition of proliferation, migration and invasion in gastric cancer cells, which potentiates sensitivity to 5-FU by promoting the activation of Beclin-1-dependent autophagy and targeting the myosin light-chain kinase (MLCK) signaling pathway. Previous studies have shown that autophagy might be associated with the MLCK signaling pathway. The autophagy inhibitor, 3-methyladenine, effectively rescued the migratory and invasive capabilities of gastric cancer cells, while also reducing expression level of MLCK and the phosphorylation level of MLC. This indicates that autophagy is involved in tumor metastasis, which may be related to inhibition of the MLCK signaling pathway. Our findings indicate that melatonin can improve the effectiveness of 5-fluorouracil in gastric cancer and could be used as a supplemental agent in the treatment of gastric cancer with 5-fluorouracil.

6.
mSphere ; 8(6): e0043123, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37819112

RESUMEN

IMPORTANCE: PD is recognized as a multisystem disease concerning GI dysfunction and microbiota dysbiosis but still lacks ideal therapies. Recently, aberrant microbiota-derived metabolites are emerging as important participants in PD etiology. However, the alterations of gut microbiota community and serum untargeted metabolite profile have not been fully investigated in a PD mice model. Here, we discover sharply reduced levels of Lactobacillus and taurine in MPTP-treated mice. Moreover, Lactobacillus, Adlercreutzia, and taurine-related metabolites showed the most significant correlation with pathological and GI performance of PD mice. The abundances of microbial transporter and enzymes participating in the degeneration of taurine were disturbed in PD mice. Most importantly, taurine supplement ameliorates MPTP-induced motor deficits, DA neuron loss, and microglial activation. Our data highlight the impaired taurine-based microbiome-metabolism axis during the progression of PD and reveal a novel and previously unrecognized role of genera in modulating taurine metabolism.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Microbioma Gastrointestinal/fisiología , Taurina
7.
Phytomedicine ; 120: 155041, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678054

RESUMEN

BACKGROUND: Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by well-defined erythema and white scales, which affects approximately 2% of the worldwide population and causes long-term distress to patients. Therefore, development of safe and effective therapeutic drugs is imminent. Autophagy, an evolutionarily conserved catabolic process, degrades intracellular constituents to maintain cellular energy homeostasis. Numerous studies have revealed that autophagy is closely related to immune function, such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development. Phytochemicals derived from natural plants are often used to treat psoriasis due to their unique therapeutic properties and favorable safety. So far, a mass of phytochemicals have been proven to be able to activate autophagy and thus alleviate psoriasis. This review aimed to provide directions for finding phytochemicals that target autophagy to treat psoriasis. METHODS: The relevant literatures were collected from classical TCM books and a variety of databases (PubMed, Google Scholar, ScienceDirect, Springer Link, Web of Science and China National Knowledge Infrastructure) till December 2022. Search terms were "Phytochemical", "Psoriasis" and "Autophagy". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS: Phytochemicals treat psoriasis mainly through regulating immune cell function, inhibiting excessive inflammatory response, and reducing oxidative stress. While the role and mechanism of autophagy in the pathogenesis of psoriasis have been confirmed in human trials, most of the evidence for phytochemicals that target autophagy to treat psoriasis comes from animal studies. The research focusing on the role of phytochemical-mediated autophagy in the prevention and treatment of psoriasis is limited, and the definite relationship between phytochemical-regulated autophagy and treatment of psoriasis still deserves further experimental confirmation. CONCLUSIONS: Phytochemicals with autophagic activities will provide new insights into the therapeutic intervention for psoriasis.


Asunto(s)
Psoriasis , Animales , Humanos , Psoriasis/tratamiento farmacológico , Autofagia , Piel , China , Bases de Datos Factuales
8.
J Nat Med ; 77(4): 712-720, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37306932

RESUMEN

Psoriasis is a chronic inflammatory skin disorder characterized by abnormal keratinocytes proliferation and multiple immune cells infiltration in the dermis and epidermis. Although most psoriasis-related researches have been concentrated on the interleukin-23 (IL-23)/interleukin-17 (IL-17) axis, new data suggest that keratinocytes also play a pivotal role in psoriasis. Previously, we found that punicalagin (PUN), a bioactive ellagitannin extracted from Pericarpium Granati (the pericarpium of Punica granatum L.), exerts a therapeutic effect on psoriasis. However, the underlying mechanism, especially its potential modulatory effect on keratinocytes, remains obscure. Our study aims to reveal the potential regulatory effect and its underlying cellular mechanism of PUN on the hyperproliferation of keratinocytes. We used tumor necrosis factor α (TNF-α), IL-17A and interleukin-6 (IL-6) to induce abnormal proliferation of HaCaT cells (Human Keratinocytes Cells) in vitro. Then, we evaluated the effects of PUN through MTT assay, EdU staining and cell cycle detection. Finally, we explored the underlying cellular mechanisms of PUN via RNA-sequencing, WB in vitro and in vivo. Here, we found that PUN can directly and dose-dependently decrease TNF-α, IL-17A and IL-6-induced abnormal proliferation of HaCaT cells in vitro. Mechanically, PUN suppresses the hyperproliferation of keratinocytes through repressing S-phase kinase-associated protein 2 (SKP2) expression in vitro and in vivo. Moreover, overexpression of SKP2 can partly abolish PUN-mediated inhibition of aberrantly proliferative keratinocytes. These results illustrate that PUN can reduce the severity of psoriasis through directly repressing SKP2-mediated abnormal proliferation of keratinocytes, which gives new insight into the therapeutic mechanism of PUN on psoriasis. Moreover, these findings imply that PUN might be a promising drug candidate for the treatment of psoriasis.


Asunto(s)
Taninos Hidrolizables , Psoriasis , Humanos , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/uso terapéutico , Interleucina-17/metabolismo , Interleucina-17/farmacología , Interleucina-17/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Queratinocitos , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Proliferación Celular
9.
J Integr Med ; 21(4): 385-396, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37380564

RESUMEN

OBJECTIVE: This study investigated trends in the study of phytochemical treatment of post-traumatic stress disorder (PTSD). METHODS: The Web of Science database (2007-2022) was searched using the search terms "phytochemicals" and "PTSD," and relevant literature was compiled. Network clustering co-occurrence analysis and qualitative narrative review were conducted. RESULTS: Three hundred and one articles were included in the analysis of published research, which has surged since 2015 with nearly half of all relevant articles coming from North America. The category is dominated by neuroscience and neurology, with two journals, Addictive Behaviors and Drug and Alcohol Dependence, publishing the greatest number of papers on these topics. Most studies focused on psychedelic intervention for PTSD. Three timelines show an "ebb and flow" phenomenon between "substance use/marijuana abuse" and "psychedelic medicine/medicinal cannabis." Other phytochemicals account for a small proportion of the research and focus on topics like neurosteroid turnover, serotonin levels, and brain-derived neurotrophic factor expression. CONCLUSION: Research on phytochemicals and PTSD is unevenly distributed across countries/regions, disciplines, and journals. Since 2015, the research paradigm shifted to constitute the mainstream of psychedelic research thus far, leading to the exploration of botanical active ingredients and molecular mechanisms. Other studies focus on anti-oxidative stress and anti-inflammation. Please cite this article as: Gao B, Qu YC, Cai MY, Zhang YY, Lu HT, Li HX, Tang YX, Shen H. Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace. J Integr Med. 2023; 21(4):385-396.


Asunto(s)
Alucinógenos , Trastornos por Estrés Postraumático , Trastornos Relacionados con Sustancias , Humanos , Trastornos por Estrés Postraumático/tratamiento farmacológico , Alucinógenos/uso terapéutico , Trastornos Relacionados con Sustancias/tratamiento farmacológico
10.
Int J Food Sci Nutr ; 74(2): 234-246, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37016780

RESUMEN

Trimethylamine N-oxide (TMAO), a gut microbiota-dependent metabolite, has been shown to aggravate cardiovascular disease. However, the mechanisms of TMAO in the setting of cardiovascular disease progress remain unclear. Here, we aim to investigate the effects of TMAO on atherosclerosis (AS) development and the underlying mechanisms. Apoe -/- mice received choline or TMAO supplementation in a normal diet and a western diet for 12 weeks. Choline or TMAO supplementation in both normal diet and western diet significantly promoted plaque progression in Apoe-/- mice. Besides, serum lipids levels and inflammation response in the aortic root were enhanced by choline or TMAO supplementation. In particular, choline or TMAO supplementation in the western diet changed intestinal microbiota composition and bile acid metabolism. Therefore, choline or TMAO supplementation may promote AS by modulating gut microbiota in mice fed with a western diet and by other mechanisms in mice given a normal diet, even choline or TMAO supplementation in a normal diet can promote AS.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Ratones , Animales , Dieta Occidental/efectos adversos , Colina/metabolismo , Colina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Metilaminas , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Suplementos Dietéticos , Apolipoproteínas E/genética
11.
Int J Med Sci ; 20(3): 385-391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860673

RESUMEN

Objectives: The objective of this study is to explore the incidence, characteristics, risk factors, and prognosis of liver injury in patients with COVID-19. Methods: We collected clinical data of 384 cases of COVID-19 and retrospectively analyzed the incidence, characteristics, and risk factors of liver injury of the patients. In addition, we followed the patient two months after discharge. Results: A total of 23.7% of the patients with COVID-19 had liver injury, with higher serum AST (P < 0.001), ALT (P < 0.001), ALP (P = 0.004), GGT (P < 0.001), total bilirubin (P = 0.002), indirect bilirubin (P = 0.025) and direct bilirubin (P < 0.001) than the control group. The median serum AST and ALT of COVID-19 patients with liver injury were mildly elevated. Risk factors of liver injury in COVID-19 patients were age (P = 0.001), history of liver diseases (P = 0.002), alcoholic abuse (P = 0.036), body mass index (P = 0.037), severity of COVID-19 (P < 0.001), C-reactive protein (P < 0.001), erythrocyte sedimentation rate (P < 0.001), Qing-Fei-Pai-Du-Tang treatment (P = 0.032), mechanical ventilation (P < 0.001), and ICU admission (P < 0.001). Most of the patients (92.3%) with liver injury were treated with hepatoprotective drugs. 95.6% of the patients returned to normal liver function tests at 2 months after discharge. Conclusions: Liver injury was commen in COVID-19 patients with risk factors, most of them have mild elevations in transaminases, and conservative treatment has a good short-term prognosis.


Asunto(s)
COVID-19 , Humanos , Estudios Retrospectivos , COVID-19/complicaciones , Bilirrubina , Sedimentación Sanguínea , Hígado
12.
J Ethnopharmacol ; 307: 116091, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36592823

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qidan Tiaozhi capsule (QD), a traditional Chinese medicine, has been used to treat metabolic syndrome for over a decade. However, the mechanism of QD in the treatment of metabolic syndrome is still unknown. AIM OF THE STUDY: Growing studies demonstrate that impaired mitophagy is one of the important causes of metabolic syndrome. Thus, this research aims to investigate the mechanism of mitophagy in the QD treatment of metabolic syndrome. MATERIALS AND METHODS: Network pharmacology and molecular docking were used to probe the mechanism of QD treatment of metabolic syndrome. In an oleic acid-induced cell model, glucose consumption and uptake capacity, triglyceride (TG), total cholesterol (TC), malonaldehyde (MDA), superoxide dismutase (SOD) and ROS levels, and mitochondrial membrane potential (MMP) were examined. mRFP-GFP-LC3 adenovirus and GFP-LC3 lentivirus were used to examine the effect of QD on mitophagy. The IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were also determined. What's more, the PINK1 gene was silenced to verify the above findings. In a high-fat diet-fed mouse model, body weight, organ indexes, OGTT, ITT, HOMA-IR, insulin sensitivity, serum MDA, SOD, TC, TG, LDL-C and HDL-C, hepatic TC, TG, LDL-C and HDL-C levels, hepatic steatosis, and IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were investigated. RESULTS: Results from network pharmacology and molecular docking suggested that QD might suppress oxidative stress to improve metabolic syndrome. In an oleic acid-induced cell model, compared with the model group, enhanced glucose consumption and uptake ability, inhibited intracellular lipid accumulation, TC, TG, MDA and ROS levels, and increased SOD level and MMP were found in QD groups. And mitophagy levels, IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were promoted. Interestingly, PINK1 silencing reversed the therapeutic action of QD on oleic acid-induced cells. In high-fat diet-fed mice, inhibited body weight, abdominal fat indexes, liver indexes, HOMA-IR, serum and hepatic TC, TG and LDL-C, serum MDA and hepatic steatosis, and increased insulin sensitivity, serum and hepatic HDL-C, serum SOD, and activated IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were found in QD groups. CONCLUSION: QD activates AMPK/PINK1-Parkin-mediated mitophagy to suppress oxidative stress to treat metabolic syndrome.


Asunto(s)
Medicamentos Herbarios Chinos , Hígado Graso , Resistencia a la Insulina , Síndrome Metabólico , Mitofagia , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , LDL-Colesterol , Síndrome Metabólico/tratamiento farmacológico , Mitofagia/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ácido Oléico/farmacología , Fosfatidilinositol 3-Quinasas , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos , Ubiquitina-Proteína Ligasas/metabolismo , Medicamentos Herbarios Chinos/farmacología
13.
Nutrients ; 14(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36501095

RESUMEN

Atherosclerosis (AS) is a chronic inflammatory disease that serves as a common pathogenic underpinning for various cardiovascular diseases. Although high circulating branched-chain amino acid (BCAA) levels may represent a risk factor for AS, it is unclear whether dietary BCAA supplementation causes elevated levels of circulating BCAAs and hence influences AS, and the related mechanisms are not well understood. Here, ApoE-deficient mice (ApoE-/-) were fed a diet supplemented with or without BCAAs to investigate the effects of BCAAs on AS and determine potential related mechanisms. In this study, compared with the high-fat diet (HFD), high-fat diet supplemented with BCAAs (HFB) reduced the atherosclerotic lesion area and caused a significant decrease in serum cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels. BCAA supplementation suppressed the systemic inflammatory response by reducing macrophage infiltration; lowering serum levels of inflammatory factors, including monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6); and suppressing inflammatory related signaling pathways. Furthermore, BCAA supplementation altered the gut bacterial beta diversity and composition, especially reducing harmful bacteria and increasing probiotic bacteria, along with increasing bile acid (BA) excretion. In addition, the levels of total BAs, primary BAs, 12α-hydroxylated bile acids (12α-OH BAs) and non-12α-hydroxylated bile acids (non-12α-OH BAs) in cecal and colonic contents were increased in the HFB group of mice compared with the HFD group. Overall, these data indicate that dietary BCAA supplementation can attenuate atherosclerosis induced by HFD in ApoE-/- mice through improved dyslipidemia and inflammation, mechanisms involving the intestinal microbiota, and promotion of BA excretion.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Aminoácidos de Cadena Ramificada/metabolismo , Aterosclerosis/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos y Sales Biliares , Colesterol , Administración Oral , Ratones Endogámicos C57BL
14.
Am J Chin Med ; 50(8): 2125-2151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36309810

RESUMEN

Tanshinone IIA (Tan-IIA) is a major component extracted from the traditional herbal medicine Danshen, which has shown antipulmonary fibrosis by suppress reactive oxygen species-mediated activation of myofibroblast. However, the exact mechanism of Tan-IIA against pulmonary fibrosis (PF) remains unclear. This work aimed to explore the underlying mechanism of the protective effects of Tan-IIA on PF. By using high-throughput RNA-Seq analysis, we have compared the genome-wide gene expression profiles and pathway enrichment of Tan-IIA-treated NIH-3T3 cells with or without transforming growth factor beta 1 (TGF-[Formula: see text]1) induction. In normal NIH-3T3 cells, Tan-IIA treatment up-regulated 181 differential expression genes (DEGs) and down-regulated 137 DEGs. In TGF-[Formula: see text]1-induced NIH-3T3 cells, Tan-IIA treatment up-regulated 709 DEGs and down-regulated 1075 DEGs, and these DEGs were enriched in extracellular matrix organization, collagen fibril organization, cell adhesion, ECM-receptor interaction, PI3K-Akt signaling pathway and P53 signaling pathway. Moreover, there were 207 co-expressed DEGs between Tan-IIA treatment vs. the Control and TGF-[Formula: see text]1 plus Tan-IIA treatment vs. TGF-[Formula: see text]1 alone treatment, some of which were related to anti-oxidative stress. In both normal and TGF-[Formula: see text]1-induced NIH-3T3 cells, protein-protein interaction network analysis indicated that Tan-IIA can regulate the expression of several common anti-oxidant genes including Heme oxygenase 1 (Ho-1, also known as Homx1), Sestrin2 (Sesn2), GCL modifier subunit (Gclm), GCL catalytic subunit (Gclc) and Sequestosome-1 (Sqstm1). Quantitative Real-time polymerase chain reaction analysis confirmed some DEGs specifically expressing on Tan-IIA treated cells, which provided new candidates for further functional studies of Tan-IIA. In both in vitro and in vivo PF models, the protein expression of Sesn2 was significantly enhanced by Tan-IIA treatment. Overexpression and knockdown experiments showed that Sesn2 is required for Tan-IIA against TGF-[Formula: see text]1-induced myofibroblast activation by reinforcing nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated anti-oxidant response via downregulation of kelch-like ECH-associated protein 1 (Keap1). These results suggest Tan-IIA inhibits myofibroblast activation by activating Sesn2-Nrf2 signaling pathway, and provide a new insight into the essential role of Sesn2 in PF.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Fibrosis Pulmonar , Animales , Ratones , Antioxidantes/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/genética , Transducción de Señal
15.
Front Microbiol ; 13: 920277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935188

RESUMEN

Branched-chain amino acids (BCAAs), essential amino acids for the human body, are mainly obtained from food. High levels of BCAAs in circulation are considered as potential markers of metabolic-associated fatty liver disease (MAFLD) in humans. However, there are conflicting reports about the effects of supplement of BCAAs on MAFLD, and research on BCAAs and gut microbiota is not comprehensive. Here, C57BL/6J mice were fed with a high-fat diet with or without BCAAs to elucidate the effects of BCAAs on the gut microbiota and metabolic functions in a mouse model of MAFLD. Compared to high-fat diet (HFD) feeding, BCAA supplementation significantly reduced the mouse body weight, ratio of liver/body weight, hepatic lipid accumulation, serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and alanine aminotransferase (ALT), and the expressions of the lipogenesis-related enzymes Fas, Acc, and Scd-1 and increased expressions of the lipolysis-related enzymes Cpt1A and Atgl in the liver. BCAAs supplementation also counteracted HFD-induced elevations in serum BCAAs levels by stimulating the enzymatic activity of BCKDH. Furthermore, BCAAs supplementation markedly improved the gut bacterial diversity and altered the gut microbiota composition and abundances, especially those of genera, in association with MAFLD and BCAAs metabolism. These data suggest that BCAA treatment improves HFD-induced MAFLD through mechanisms involving intestinal microbes.

16.
Nanotechnology ; 33(38)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35697009

RESUMEN

Therapeutic nanoparticles can be combined with different anticancer drugs to achieve a synergistic therapy and avoid the limitations of traditional medicine and thus have clinical prospects for cancer. Herein, an effective nanoplatform was developed for self-assembling AMF@DOX-Fe3+-PEG nanoparticles (ADPF NPs) via the coordination of ferric ions (Fe3+), amentoflavone (AMF), doxorubicin (DOX), and PEG-polyphenol. The ADPF NPs possessed high drug loading efficiency, good stability and dispersion in water, prolonged blood circulation, and pH-dependent release, which leading to targeted drug transport and enhanced drug accumulation in the tumor. The AMF from the ADPF NPs could inhibit the expression of the Aldo-keto reductase family 1B10 (AKR1B10) and nuclear factor-kappa B p65 (NF-κB p65), which reduced the cardiotoxicity induced by DOX and enhanced the chemotherapy efficacy. This study established a new strategy of combining drug therapy with a nanoplatform. This new strategy has a wide application prospect in clinical tumor therapy.


Asunto(s)
Biflavonoides , Nanopartículas , Aldo-Ceto Reductasas , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Nanopartículas/uso terapéutico
17.
Sci Total Environ ; 823: 153763, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35151732

RESUMEN

Chiral pesticides are unique hazardous materials. Here, we systematically studied the potentially harmful products of enantioselective indoxacarb degradation throughout tea growth, processing, and brewing and tested their toxicity to tea geometrid larvae and honeybees. The half-lives of S-indoxacarb and R-indoxacarb during tea growth were 2.6 d and 3.3 d, respectively. There was a trend toward the production of S-indoxacarb from R-indoxacarb. The degradation products IN-JT333, IN-MK638, IN-MF014, and IN-KG433 were also characterized in tea growth and processing and detected. IN-JT333, previously known as a direct insecticidal compound produced by the enzymatic transformation of indoxacarb in insects, was first found in plant samples. The fixation and rolling of green tea and the rolling of black tea were the most important steps that affected indoxacarb and its degradation products. The leaching rates of R-indoxacarb and S-indoxacarb were slightly higher in green tea than in black tea. The maximum leaching rates of IN-MK638 and IN-MF014 during the brewing process reached 89.9% and 94.1%, respectively. Contact toxicity tests with honeybees and tea geometrid larvae in the lab showed that the relative toxicities of the compounds could be ranked as follows: S-indoxacarb > indoxacarb (3S + 1R) ≫ R-indoxacarb. TEST toxicity predictions showed that relative toxicities were ranked IN-KG433 > indoxacarb > IN-JT333 > IN-MK638 > IN-MF014. The toxicity of the degradation product IN-KG433 is higher than that of indoxacarb itself, and its maximum leaching rate is as high as 88.2%. It therefore transfers readily from processed tea to the tea infusion during the brewing process. These findings indicate the need to pay attention to the risk of metabolites and enantiomeric differences and provide new, comprehensive insight into the risk factors for indoxacarb in tea and are relevant to the study of other chiral pesticides.


Asunto(s)
Camellia sinensis , Oxazinas , Animales , Oxazinas/toxicidad , Estereoisomerismo ,
18.
Neurogastroenterol Motil ; 34(7): e14313, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35068020

RESUMEN

OBJECTIVES: This study investigates the effects and mechanisms of intestinal microbiota transplantation on cerebral ischemia reperfusion injury in aged mice. METHODS: We constructed a middle cerebral artery occlusion model after fecal microbiota transplantation from young C57 mice to aged C57 mice for 30 consecutive days via enema. The neurological deficit score, cerebral infarction volume, fecal flora composition, and IL-17 levels in the colon, brain, and serum were evaluated in young mice, aged mice, and aged mice that received fecal microbiota transplantation. Moreover, we administered rIL-17A through caudal vein injection to verify its effect on cerebral ischemia reperfusion injury in aged mice. RESULTS: We find that aged mice exhibited larger cerebral infarction volume and more severe neurological deficit than young mice after middle cerebral artery occlusion. Bacteroidetes increased and firmicutes decreased significantly in the feces of aged mice after microbiota transplantation. Furthermore, the transplanted mice showed improved neurological function and reduced infarction volume after middle cerebral artery occlusion compared with the control aged mice. We also find that the neuroprotective effect of the microbiota transplantation was reversed by pre-treatment of rIL-17A. CONCLUSION: In summary, intestinal microbiota transplantation can alleviate cerebral ischemia reperfusion injury in aged mice by restoring their microbiota environment and inhibiting IL-17 in the gut, serum, and brain tissue.


Asunto(s)
Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Trasplante de Microbiota Fecal , Infarto de la Arteria Cerebral Media/terapia , Interleucina-17 , Ratones , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/terapia
19.
J Sci Food Agric ; 102(10): 3983-3993, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34994973

RESUMEN

BACKGROUND: Tea is one of the most popular drinks in the world. The growth of tea plant is inseparable from the control of pesticides on diseases and pests. Pyriproxyfen is used as a pesticide substitute to control insect pests in tea gardens, but little is known about its residue degradation. Here, we performed an integrative study of the degradation and metabolism of pyriproxyfen from the tea garden to the cup. RESULTS: The dissipation half-life of pyriproxyfen during tea growth was 2.74 days, and five metabolites PYPAC, PYPA, DPH-Pyr, 5''-OH-Pyr, and 4'-OH-Pyr were generated. The total processing factors for pyriproxyfen in green tea and black tea were 2.41-2.83 and 2.77-3.70, respectively. The residues of pyriproxyfen and its metabolites were affected by different processing steps. The total leaching rates of pyriproxyfen from green tea and black tea into their infusions were 9.8-12.3% and 5.3-13.8%, respectively. The leaching rates of the five metabolites were higher than that of pyriproxyfen and increased the intake risk. CONCLUSION: To ensure safe consumption, the recommended maximum residue limit value of pyriproxyfen in tea can be set to 5 mg kg-1 and the pre-harvest interval can be set to 5 days. © 2022 Society of Chemical Industry.


Asunto(s)
Camellia sinensis , Residuos de Plaguicidas , Camellia sinensis/química , Cromatografía Liquida , Residuos de Plaguicidas/análisis , Piridinas , Medición de Riesgo , Espectrometría de Masas en Tándem , Té/química
20.
Clin Appl Thromb Hemost ; 27: 10760296211044722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34559016

RESUMEN

BACKGROUND: Novel oral anticoagulants and warfarin are widely used for stroke prevention in patients with atrial fibrillation. The anticoagulation status of patients receiving warfarin or rivaroxaban has been studied. In this study, we aimed to evaluate the effect of dabigatran and warfarin on preventing thrombin generation (TG). METHODS: This retrospective study enrolled 237 nonvalvular atrial fibrillation (NVAF) subjects treated with 110 mg dabigatran etexilate twice daily and 224 NVAF patients received adjusted-dose warfarin (international normalized ratio [INR] of 2 to 3)). Coagulation assays, prothrombin fragment 1 + 2 (F1+2), calibrated automated thrombogram, and thrombin-antithrombin complex (TAT) were detected at the steady state. RESULTS: Activated partial thromboplastin time (APTT), antithrombin III activity, fibrinogen, and lag time showed no difference between the two groups. Compared to the dabigatran group, prothrombin time and INR values were higher in the warfarin group (all P < .001). Thrombin time, endogenous thrombin potential, peak TG (Cmax), F1+2, and TAT were lower in the warfarin group. The inhibition of TG was still stronger in the warfarin group when the patients were divided into subgroups. CONCLUSION: Conventional coagulation assays are suboptimal for assessing the coagulation status of dabigatran. TG could be used as supplementary assays to evaluate the anticoagulation effect of oral anticoagulants. Our results suggest that warfarin may inhibit TG more aggressively than dabigatran in patients regardless of age and kidney function.


Asunto(s)
Anticoagulantes/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Dabigatrán/uso terapéutico , Warfarina/uso terapéutico , Anciano , Anticoagulantes/farmacología , Dabigatrán/farmacología , Femenino , Humanos , Masculino , Estudios Retrospectivos , Warfarina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA