Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 58, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703107

RESUMEN

BACKGROUND: Grain weight/size influences not only grain yield (GY) but also nutritional and appearance quality and consumer preference in Tartary buckwheat. The identification of quantitative trait loci (QTLs)/genes for grain weight/size is an important objective of Tartary buckwheat genetic research and breeding programs. RESULTS: Herein, we mapped the QTLs for GY, 1000-grain weight (TGW), grain length (GL), grain width (GW) and grain length-width ratio (L/W) in four environments using 221 recombinant inbred lines (XJ-RILs) derived from a cross of 'Xiaomiqiao × Jinqiaomai 2'. In total, 32 QTLs, including 7 for GY, 5 for TGW, 6 for GL, 11 for GW and 3 for L/W, were detected and distributed in 24 genomic regions. Two QTL clusters, qClu-1-3 and qClu-1-5, located on chromosome Ft1, were revealed to harbour 7 stable major QTLs for GY (qGY1.2), TGW (qTGW1.2), GL (qGL1.1 and qGL1.4), GW (qGW1.7 and qGW1.10) and L/W (qL/W1.2) repeatedly detected in three and above environments. A total of 59 homologues of 27 known plant grain weight/size genes were found within the physical intervals of qClu-1-3 and qClu-1-5. Six homologues, FtBRI1, FtAGB1, FtTGW6, FtMADS1, FtMKK4 and FtANT, were identified with both non-synonymous SNP/InDel variations and significantly differential expression levels between the two parents, which may play important roles in Tatary buckwheat grain weight/size control and were chosen as core candidate genes for further investigation. CONCLUSIONS: Two stable major QTL clusters related to grain weight/size and six potential key candidate genes were identified by homology comparison, SNP/InDel variations and qRT‒qPCR analysis between the two parents. Our research provides valuable information for improving grain weight/size and yield in Tartary buckwheat breeding.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Fitomejoramiento , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Grano Comestible/genética , Estudios de Asociación Genética , Fenotipo
2.
Funct Integr Genomics ; 22(6): 1449-1458, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36369301

RESUMEN

Tartary buckwheat is among the valuable crops, utilized as both food and Chinese herbal medicine. To uncover the accumulation dynamics of the main nutrients and their regulatory mechanism of Tartary buckwheat seeds, microscopic observations and nutrient analysis were conducted which suggested that starch, proteins as well as flavonoid gradually accumulated among seed development. Comparative proteomic analysis of rice Tartary buckwheat at three different developmental stages was performed. A total of 78 protein spots showed differential expression with 74 of them being successfully identified by MALDI-TOF/TOF MS. Among them, granule bound starch synthase (GBSS1) might be the critical enzyme that determines starch biosynthesis, while 11 S seed storage protein and vicilin seemed to be the main globulin and affect seed storage protein accumulation in Tartary buckwheat seeds. Two enzymes, flavanone 3-hydroxylase (F3H) and anthocyanidin reductase (ANR), involved in the flavonoid biosynthesis pathway were identified. Further analysis on the expression profiles of flavonoid biosynthetic genes revealed that F3H might be the key enzyme that promote flavonoid accumulation. This study provides insights into the mechanism of nutrition accumulation at the protein level in Tartary buckwheat seeds and may facilitate in the breeding and enhancement of Tartary buckwheat germplasm.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Proteómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Semillas , Proteínas de Almacenamiento de Semillas/genética , Almidón/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Food Chem ; 371: 131125, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34563971

RESUMEN

Tartary buckwheat has higher health-promoting value than common buckwheat. However, the related metabolites information except flavonoids is largely deficient. Here, we compared the seed metabolomes of the two species using a UHPLC-QqQ-MS-based metabolomics approach. In total, 722 metabolites were obtained, of which 84 and 78 were identified as the key active ingredients of Traditional Chinese Medicines and the active pharmaceutical ingredients for six major diseases-resistance, respectively. Comparative analysis showed there were obviously difference in metabolic profiles between the two buckwheat species, and further found 61 flavonoids and 94 non-flavonoids metabolites displayed significantly higher contents (≥2 fold) in Tartary buckwheat than in common buckwheat. Our results suggest that Tartary and common buckwheat seeds are rich in metabolites beneficial to human health, and non-flavonoids metabolites also contributed to Tartary buckwheat's higher health-promoting value than common buckwheat. This study provides valuable information for the development of new functional foods of Tartary buckwheat.


Asunto(s)
Fagopyrum , Flavonoides , Humanos , Metabolómica , Semillas
4.
BMC Plant Biol ; 21(1): 132, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750309

RESUMEN

BACKGROUND: Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS: In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS: Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.


Asunto(s)
Fagopyrum/crecimiento & desarrollo , Fagopyrum/genética , MicroARNs/fisiología , ARN Mensajero/fisiología , ARN de Planta/fisiología , Semillas/crecimiento & desarrollo , Evolución Molecular , Perfilación de la Expresión Génica , Reacción en Cadena de la Ligasa , MicroARNs/genética , Filogenia , Desarrollo de la Planta/genética , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/genética
5.
Fitoterapia ; 152: 104875, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33675886

RESUMEN

One new limonoid, named 19-hydroxy methyl isoobacunoate diosphenol (1); one new degraded limonoid, named 9α-methoxyl dictamdiol (9); two new quinolone alkaloids, 1-methyl-3-[(7E,9E,12Z)-7,9,12-pentadecadienyl]-4(1H)-quinolone (11) and 1-methyl-3-[(7E,9E,11E)-7,9,11-pentadecadienyl]-4(1H)-quinolone (12), along with eight known compounds, evodol (2), 7ß-acetoxy-5-epilimonin (3), rutaevine (4), 6ß-acetoxy-5-epilimonin (5), limonin (6), obacunone (7), clauemargine L (8), hiiranlactone E (10) were isolated from the fruits of Evodia rutaecarpa (Juss.) Benth.. Structures of the four new compounds were elucidated on the basis of extensive spectroscopic techniques, including 1D and 2D NMR techniques. Compounds 3, 5, 9, 11 and 12 showed obviously cytotoxic activity against six human tumor lines, while compounds 11, 12 displayed anti-platelet aggregation induced by ADP at 50 µM and 100 µM.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Evodia/química , Limoninas/farmacología , Quinolonas/farmacología , Alcaloides/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Plaquetas/efectos de los fármacos , Línea Celular Tumoral , China , Frutas/química , Humanos , Limoninas/aislamiento & purificación , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Agregación Plaquetaria/efectos de los fármacos , Quinolonas/aislamiento & purificación
6.
BMC Genomics ; 22(1): 142, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639857

RESUMEN

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum), an important pseudocereal crop, has high economic value due to its nutritional and medicinal properties. However, dehulling of Tartary buckwheat is difficult owing to its thick and tough hull, which has greatly limited the development of the Tartary buckwheat processing industry. The construction of high-resolution genetic maps serves as a basis for identifying quantitative trait loci (QTLs) and qualitative trait genes for agronomic traits. In this study, a recombinant inbred lines (XJ-RILs) population derived from a cross between the easily dehulled Rice-Tartary type and Tartary buckwheat type was genotyped using restriction site-associated DNA (RAD) sequencing to construct a high-density SNP genetic map. Furthermore, QTLs for 1000-grain weight (TGW) and genes controlling hull type were mapped in multiple environments. RESULTS: In total, 4151 bin markers comprising 122,185 SNPs were used to construct the genetic linkage map. The map consisted of 8 linkage groups and covered 1444.15 cM, with an average distance of 0.35 cM between adjacent bin markers. Nine QTLs for TGW were detected and distributed on four loci on chromosome 1 and 4. A major locus detected in all three trials was mapped in 38.2-39.8 cM region on chromosome 1, with an LOD score of 18.1-37.0, and explained for 23.6-47.5% of the phenotypic variation. The genes controlling hull type were mapped to chromosome 1 between marker Block330 and Block331, which was closely followed by the major locus for TGW. The expression levels of the seven candidate genes controlling hull type present in the region between Block330 and Block336 was low during grain development, and no significant difference was observed between the parental lines. Six non-synonymous coding SNPs were found between the two parents in the region. CONCLUSIONS: We constructed a high-density SNP genetic map for the first time in Tartary buckwheat. The mapped major loci controlling TGW and hull type will be valuable for gene cloning and revealing the mechanism underlying grain development and easy dehulling, and marker-assisted selection in Tartary buckwheat.


Asunto(s)
Fagopyrum , Grano Comestible , Fagopyrum/genética , Ligamiento Genético , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
7.
BMC Plant Biol ; 20(1): 505, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148168

RESUMEN

BACKGROUND: Tartary buckwheat has gained popularity in the food marketplace due to its abundant nutrients and high bioactive flavonoid content. However, its difficult dehulling process has severely restricted its food processing industry development. Rice-tartary buckwheat, a rare local variety, is very easily dehulled, but the cellular, physiological and molecular mechanisms responsible for this easy dehulling remains largely unclear. RESULTS: In this study, we integrated analyses of the comparative cellular, physiological, transcriptome, and gene coexpression network to insight into the reason that rice-tartary buckwheat is easy to dehull. Compared to normal tartary buckwheat, rice-tartary buckwheat has significantly brittler and thinner hull, and thinner cell wall in hull sclerenchyma cells. Furthermore, the cellulose, hemicellulose, and lignin contents of rice-tartary buckwheat hull were significantly lower than those in all or part of the tested normal tartary buckwheat cultivars, respectively, and the significant difference in cellulose and hemicellulose contents between rice-tartary buckwheat and normal tartary buckwheat began at 10 days after pollination (DAP). Comparative transcriptome analysis identified a total of 9250 differentially expressed genes (DEGs) between the rice- and normal-tartary buckwheat hulls at four different development stages. Weighted gene coexpression network analysis (WGCNA) of all DEGs identified a key module associated with the formation of the hull difference between rice- and normal-tartary buckwheat. In this specific module, many secondary cell wall (SCW) biosynthesis regulatory and structural genes, which involved in cellulose and hemicellulose biosynthesis, were identified as hub genes and displayed coexpression. These identified hub genes of SCW biosynthesis were significantly lower expression in rice-tartary buckwheat hull than in normal tartary buckwheat at the early hull development stages. Among them, the expression of 17 SCW biosynthesis relative-hub genes were further verified by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS: Our results showed that the lower expression of SCW biosynthesis regulatory and structural genes in rice-tartary buckwheat hull in the early development stages contributes to its easy dehulling by reducing the content of cell wall chemical components, which further effects the cell wall thickness of hull sclerenchyma cells, and hull thickness and mechanical strength.


Asunto(s)
Grano Comestible/metabolismo , Fagopyrum/metabolismo , Manipulación de Alimentos , Celulosa/análisis , Grano Comestible/química , Grano Comestible/citología , Grano Comestible/fisiología , Fagopyrum/citología , Fagopyrum/genética , Fagopyrum/fisiología , Perfilación de la Expresión Génica , Genes de Plantas , Polisacáridos/análisis , Transcriptoma
8.
J Agric Food Chem ; 67(40): 11262-11276, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509416

RESUMEN

Tartary buckwheat (Fagopyrum tataricum) seeds are rich in flavonoids. However, the detailed flavonoid compositions and the molecular basis of flavonoid biosynthesis in tartary buckwheat seeds remain largely unclear. Here, we performed a combined metabolite profiling and transcriptome analysis to identify flavonoid compositions and characterize genes involved in flavonoid biosynthesis in the developing tartary buckwheat seeds. In total, 234 flavonoids, including 10 isoflavones, were identified. Of these, 80 flavonoids were significantly differential accumulation during seed development. Transcriptome analysis indicated that most structural genes and some potential regulatory genes of flavonoid biosynthesis were significantly differentially expressed in the course of seed development. Correlation analysis between transcriptome and metabolite profiling shown that the expression patterns of some differentially expressed structural genes and regulatory genes were more consistent with the changes in flavonoids profiles during seed development and promoted one SG7 subgroup R2R3-MYB transcription factors (FtPinG0009153900.01) was identified as the key regulatory gene of flavonoid biosynthesis. These findings provide valuable information for understanding the mechanism of flavonoid biosynthesis in tartary buckwheat seeds and the further development of tartary buckwheat health products.


Asunto(s)
Fagopyrum/metabolismo , Flavonoides/biosíntesis , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Fagopyrum/química , Fagopyrum/genética , Fagopyrum/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/metabolismo , Plantas/clasificación , Plantas/genética , Plantas/metabolismo , Semillas/química , Semillas/genética , Semillas/metabolismo
9.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484314

RESUMEN

Seed development is an essential and complex process, which is involved in seed size change and various nutrients accumulation, and determines crop yield and quality. Common buckwheat (Fagopyrum esculentum Moench) is a widely cultivated minor crop with excellent economic and nutritional value in temperate zones. However, little is known about the molecular mechanisms of seed development in common buckwheat (Fagopyrum esculentum). In this study, we performed RNA-Seq to investigate the transcriptional dynamics and identify the key genes involved in common buckwheat seed development at three different developmental stages. A total of 4619 differentially expressed genes (DEGs) were identified. Based on the results of Gene Ontology (GO) and KEGG analysis of DEGs, many key genes involved in the seed development, including the Ca2+ signal transduction pathway, the hormone signal transduction pathways, transcription factors (TFs), and starch biosynthesis-related genes, were identified. More importantly, 18 DEGs were identified as the key candidate genes for seed size through homologous query using the known seed size-related genes from different seed plants. Furthermore, 15 DEGs from these identified as the key genes of seed development were selected to confirm the validity of the data by using quantitative real-time PCR (qRT-PCR), and the results show high consistency with the RNA-Seq results. Taken together, our results revealed the underlying molecular mechanisms of common buckwheat seed development and could provide valuable information for further studies, especially for common buckwheat seed improvement.


Asunto(s)
Fagopyrum/crecimiento & desarrollo , Fagopyrum/genética , Perfilación de la Expresión Génica/métodos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA