Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci ; 329: 121975, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37495077

RESUMEN

AIMS: Type 1 diabetes mellitus (T1DM) has been linked to the occurrence of skeletal muscle atrophy. Insulin monotherapy may lead to excessive blood glucose fluctuations. N-acetylcysteine (NAC), a clinically employed antioxidant, possesses cytoprotective, anti-inflammatory, and antioxidant properties. The objective of our study was to evaluate the viability of NAC as a supplementary treatment for T1DM, specifically regarding its therapeutic and preventative impacts on skeletal muscle. MAIN METHODS: Here, we used beagles as T1DM model for 120d to explore the mechanism of NRF2/HO-1-mediated skeletal muscle oxidative stress and apoptosis and the therapeutic effects of NAC. Oxidative stress and apoptosis related factors were analyzed by immunohistochemistry, immunofluorescence, western blotting, and RT-qPCR assay. KEY FINDINGS: The findings indicated that the co-administration of NAC and insulin led to a reduction in creatine kinase levels, preventing weight loss and skeletal muscle atrophy. Improvement in the reduction of muscle fiber cross-sectional area. The expression of Atrogin-1, MuRF-1 and MyoD1 was downregulated, while Myh2 and MyoG were upregulated. In addition, CAT and GSH-Px levels were increased, MDA levels were decreased, and redox was maintained at a steady state. The decreased of key factors in the NRF2/HO-1 pathway, including NRF2, HO-1, NQO1, and SOD1, while KEAP1 increased. In addition, the apoptosis key factors Caspase-3, Bax, and Bak1 were found to be downregulated, while Bcl-2, Bcl-2/Bax, and CytC were upregulated. SIGNIFICANCE: Our findings demonstrated that NAC and insulin mitigate oxidative stress and apoptosis in T1DM skeletal muscle and prevent skeletal muscle atrophy by activating the NRF2/HO-1 pathway.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Perros , Animales , Antioxidantes/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Transducción de Señal , Estrés Oxidativo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Insulinas/metabolismo , Insulinas/farmacología
2.
Comput Struct Biotechnol J ; 21: 2780-2791, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181660

RESUMEN

Tumor targeting drug delivery is of significant importance for the treatment of triple negative breast cancer (TNBC) considering the presence of appreciable amount of tumor matrix and the absence of effective targets on the tumor cells. Hence in this study, a new therapeutic multifunctional nanoplatform with improved TNBC targeting ability and efficacy was constructed and used for therapy of TNBC. Specifically, curcumin loaded mesoporous polydopamine (mPDA/Cur) nanoparticles were synthesized. Thereafter, manganese dioxide (MnO2) and a hybrid of cancer-associated fibroblasts (CAFs) membranes as well as cancer cell membranes were sequentially coated on the surface of mPDA/Cur to obtain mPDA/Cur@M/CM. It was found that two distinct kinds of cell membranes were able to endow the nano platform with homologous targeting ability, thereby achieving accurate delivery of drugs. Nanoparticles gathered in the tumor matrix can loosen the tumor matrix via the photothermal effect mediated by mPDA to rupture the physical barrier of tumor, which is conducive to the penetration and targeting of drugs to tumor cells in the deep tissues. Moreover, the existence of curcumin, MnO2 and mPDA was able to promote the apoptosis of cancer cells by promoting increased cytotoxicity, enhanced Fenton-like reaction, and thermal damage, respectively. Overall, both in vitro and in vivo results showed that the designed biomimetic nanoplatform could significantly inhibit the tumor growth and thus provide an efficient novel therapeutic strategy for TNBC.

3.
Int J Biol Macromol ; 145: 611-619, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887373

RESUMEN

In the present study, freeze drying, hot-air drying, vacuum drying, and microwave drying at the microwave powers of 400, 600, and 800 W, respectively, were utilized to dry loquat leaves for evaluating the effects of different drying techniques on the physicochemical structures and bioactivities of polysaccharides extracted from loquat leaves (LLPs). Results demonstrated that the physicochemical structures and bioactivities of LLPs significantly affected by different drying techniques. The degrees of esterification, molar ratios of constituent monosaccharides, contents of uronic acids, apparent viscosities, and molecular weights of LLPs were varied by different drying techniques. Additionally, LLPs, particularly LLP-M4 which extracted from loquat leaves prepared by microwave drying at the power of 400 W, exerted remarkable in vitro binding capacities, strong inhibitory effects on α-amylase and α-glucosidase, and obvious antioxidant activities. Results indicated that the microwave drying could be an efficient drying technique before extraction of bioactive LLPs, and LLPs had great potential applications in the functional food and pharmaceutical industries.


Asunto(s)
Antioxidantes/química , Eriobotrya/química , Polisacáridos/química , alfa-Amilasas/antagonistas & inhibidores , Antioxidantes/farmacología , Desecación , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Peso Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , alfa-Glucosidasas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA