RESUMEN
This study aimed to examine the effect and underlying mechanism of Puerariae Lobatae Radix on insulin resistance in db/db mice with type 2 diabetes mellitus(T2DM) based on the analysis of intestinal flora. Fifty db/db mice were randomly divided into a model group(M group), a metformin group(YX group), a high-dose Puerariae Lobatae Radix group(YGG group), a medium-dose Puerariae Lobatae Radix group(YGZ group), and a low-dose Puerariae Lobatae Radix group(YGD group). Another 10 db/m mice were assigned to the normal group(K group). After continuous administration for eight weeks, body weight and blood sugar of mice were measured. Enzyme linked immunosorbent assay(ELISA) was used to detect glycosylated serum protein(GSP) and fasting serum insulin(FINS), and insulin resistance index(HOMA-IR) was calculated. The histopathological changes in the pancreas were observed by HE staining. Tumor necrosis factor(TNF)-α expression in the pancreas was detected using immunohistochemistry. The structural changes in fecal intestinal flora in the K, M, and YGZ groups were detected by 16S rRNA. Western blot was used to detect the expression of farnesoid X receptor(FXR) and takeda G protein-coupled receptor 5(TGR5) in the ileum, cholesterol 7α-hydroxylase(CYP7A1) and sterol 27α-hydroxylase(CYP27A1) in the liver, and G protein-coupled receptors 41(GPR41) and 43(GPR43) in the colon. Compared with the K group, the M group showed increased body weight, blood sugar, serum GSP, fasting blood glucose(FBG), and FINS, increased HOMA-IR, inflammatory infiltration of islet cells, necrosis and degeneration of massive acinar cells, unclear boundary between islet cells and acinar cells, disturbed intestinal flora, and down-regulated FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43. Compared with the M group, the YX, YGG, YGZ, and YGD groups showed decreased body weight, blood sugar, serum GSP, FBG, and FINS, islet cells with intact and clumpy morphology and clear boundary, necrosis of a few acinar cells, and more visible islet cells. The intestinal flora in the YGZ group changed from phylum to genus levels, and the relative abundance of intestinal flora affecting the metabolites of intestinal flora increased. The protein expression of FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43 increased. The results show that Puerariae Lobatae Radix can improve the inflammatory damage of pancreatic islet cells and reduce insulin resistance in db/db mice with T2DM. The mechanism of action may be related to the increase in the abundance of Actinobacteria, Bifidobacterium, and Bacteroides in the intestinal tract and the protein expression related to metabolites of intestinal flora.
Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistencia a la Insulina , Pueraria , Ratones , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Pueraria/química , ARN Ribosómico 16S , Peso Corporal , NecrosisRESUMEN
BACKGROUND: Post-stroke depression (PSD) is a common complication following a stroke, significantly impacting patients' quality of life and mental well-being. Currently, two primary approaches are employed to treat PSD: drug therapy and non-drug therapy. Among these, acupuncture, specifically scalp acupuncture (SA), has gained attention due to its cost-effectiveness and broad social benefits. SA is a precise and direct form of acupuncture that has been utilized in the treatment of PSD. Although several randomized controlled trials (RCTs) have demonstrated the efficacy of SA in treating PSD, there is a lack of comprehensive systematic reviews. Given the limitations of existing evidence, we conducted a systematic evaluation to assess the effectiveness of SA in combination with conventional therapy (CT) for intervening in PSD. METHODS: We systematically searched five databases for articles published up until May 31, 2023, pertaining to SA treatment of PSD. A team of researchers meticulously screened and assessed these articles to identify the final included studies. After extracting relevant information and outcome indicators from the selected articles, we employed RevMan5.3 software to evaluate their quality and perform statistical analysis. Throughout our research, we strictly adhered to the PRISMA 2020 guidelines. RESULTS: A total of 11 articles were included, and a meta-analysis was conducted to evaluate the effectiveness of SA combined with CT for treating PSD. The results revealed that SA combined with CT can effectively improve the treatment's success rate for PSD and reduce the severity of depressive symptoms measured by the Self-Rating Depression Scale. However, SA combined with CT did not show significant reductions in depressive symptoms assessed by the Hamilton Rating Scale for Depression, which may be related to the inclusion of high heterogeneity articles. Importantly, the combination treatment did not lead to an increase in adverse reactions among PSD patients. CONCLUSION: While the effectiveness of SA combined with CT in treating PSD still requires further validation through rigorous randomized double-blind trials, this study provides a comprehensive collection of studies that meet the criteria for SA combined with CT in PSD treatment. It objectively and systematically evaluated the impact of SA combined with CT on PSD. Consequently, the findings of this study hold certain clinical significance.
Asunto(s)
Terapia por Acupuntura , Depresión , Humanos , Depresión/etiología , Depresión/terapia , Cuero Cabelludo , Relevancia Clínica , Bases de Datos Factuales , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
A novel discovery of two hybrid benzodioxepin-dalbergiphenol epimers, named cochindalbergiphenols A-B (1-2), and a benzofuran-dalbergiphenol hybrid, named cochindalbergiphenol C (3), were isolated and identified from the heartwood of Dalbergia cochinchinensis. The structures of all the isolated compounds were identified through NMR and HRESIMS techniques, while the absolute configurations were determined by comparing the experimental and calculated ECD spectra. Compounds 1-3 exhibited potential protective effects against hypoxia/reoxygenation (H/R) induced injury in H9c2 cells.
Asunto(s)
Dalbergia , Estructura Molecular , Dalbergia/química , Extractos Vegetales/química , Espectroscopía de Resonancia MagnéticaRESUMEN
This paper aimed to study the effect of Dalbergia cochinchinensis heartwood on plasma endogenous metabolites in rats with ligation of the left anterior descending coronary artery, and to analyze the mechanism of D. cochinchinensis heartwood in improving acute myocardial ischemic injury. The stability and consistency of the components in the D. cochinchinensis heartwood were verified by the establishment of fingerprint, and 30 male SD rats were randomly divided into a sham group, a model group, and a D. cochinchinensis heartwood(6 g·kg~(-1)) group, with 10 rats in each group. The sham group only opened the chest without ligation, while the other groups established the model of ligation. Ten days after administration, the hearts were taken for hematoxylin-eosin(HE) staining, and the content of heart injury indexes in the plasma creatine kinase isoenzyme(CK-MB) and lactate dehydrogenase(LDH), energy metabolism-related index glucose(Glu) content, and vascular endothelial function index nitric oxide(NO) was determined. The endogenous metabolites were detected by ultra-high-performance liquid chromatography-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS). The results showed that the D. cochinchinensis heartwood reduced the content of CK-MB and LDH in the plasma of rats to relieve myocardial injury, reduced the content of Glu in the plasma, improved myocardial energy metabolism, increased the content of NO, cured the vascular endothelial injury, and promoted vasodilation. D. cochinchinensis heartwood improved the increase of intercellular space, myocardial inflammatory cell infiltration, and myofilament rupture caused by ligation of the left anterior descending coronary artery. The metabolomic study showed that the content of 26 metabolites in the plasma of rats in the model group increased significantly, while the content of 27 metabolites decreased significantly. Twenty metabolites were significantly adjusted after the administration of D. cochinchinensis heartwood. D. cochinchinensis heartwood can significantly adjust the metabolic abnormality in rats with ligation of the left anterior descending coronary artery, and its mechanism may be related to the regulation of cardiac energy metabolism, NO production, and inflammation. The results provide a corresponding basis for further explaining the effect of D. cochinchinensis on the acute myocardial injury.
Asunto(s)
Dalbergia , Lesiones Cardíacas , Isquemia Miocárdica , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Metabolómica , Corazón , Forma MB de la Creatina-QuinasaRESUMEN
Eucommiae Folium (EF), a traditional Chinese medicine, has been used to treat secondary hypertension, including renal hypertension and salt-sensitive hypertension, as well as hypertension caused by thoracic aortic endothelial dysfunction, a high-fat diet, and oxidized low-density lipoprotein. The antihypertensive components of EF are divided into four categories: flavonoids, iridoids, lignans, and phenylpropanoids, such as chlorogenic acid, geniposide acid and pinoresinol diglucoside. EF regulates the occurrence and development of hypertension by regulating biological processes, such as inhibiting inflammation, regulating the nitric oxide synthase pathway, reducing oxidative stress levels, regulating endothelial vasoactive factors, and lowering blood pressure. However, its molecular antihypertensive mechanisms are still unclear and require further investigation. In this review, by consulting the relevant literature on the antihypertensive effects of EF and using network pharmacology, we summarized the active ingredients and pharmacological mechanisms of EF in the treatment of hypertension to clarify how EF is associated with secondary hypertension, the related components, and underlying mechanisms. The results of the network pharmacology analysis indicated that EF treats hypertension through a multi-component, multi-target and multi-pathway mechanism. In particular, we discussed the role of EF targets in the treatment of hypertension, including epithelial sodium channel, heat shock protein70, rho-associated protein kinase 1, catalase, and superoxide dismutase. The relevant signal transduction pathways, the ras homolog family member A (RhoA)/Rho-associated protein kinase (ROCK) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase/eNOS/NO/Ca2+ pathways, are also discussed.
RESUMEN
The male flowers of Eucommia ulmoides Oliv. (MFEU) was a natural product that could alleviate fatigue and accelerate fatigue alleviation. Nonetheless, the active ingredients and underlying pharmacological mechanisms remain unknown. This study aimed to decode the active ingredients and potential action mechanisms of MFEU in the therapy of anti-fatigue using an integrated UPLC-MS analysis, network pharmacology approach, and cell experiments. Characterizations of chemical constituents of MFEU extract were identified by UPLC-Q-TOF-MS. The corresponding drug targets were retrieved from the drug target database and used to construct the "composite-target-pathway" network. The Cytoscape was used to identify potential protein targets of these MFEU components, indicating that 24 anti-fatigue compounds in MFEU regulate 18 anti-fatigue-related targets in 10 signaling pathways. The 16 components of MFEU were verified at the cellular level. The results of cell experiments showed that MFEU extract (0.361 µg/ml), Caffeic acid, Deacetylasperulosidic acid, Naringenin, Acanthoside B, Geniposidic acid, Rutin, and Quercetin could promote testosterone secretion on Leydig cells at 50 µM. The MFEU extract and seven compounds in MFEU might play a role in anti-fatigue by participating in the regulation of testosterone secretion. Finally, the results of PCR analysis showed that MFEU promotes the secretion of testosterone, which is related to CYPIIa1 and 17ß-HSD, STAR in the signal pathway of testosterone synthesis. This study provides a basis for further exploring the anti-fatigue mechanism of MFEU, adopting the method of multi-compound and multi-target.
Asunto(s)
Medicamentos Herbarios Chinos , Eucommiaceae , Eucommiaceae/química , Eucommiaceae/metabolismo , Cromatografía Liquida , Farmacología en Red , Espectrometría de Masas en Tándem/métodos , Flores , Extractos Vegetales/farmacología , Testosterona/metabolismoRESUMEN
UPLC-Q-TOF-MS and serum pharmacochemistry were employed to study the migrating components in rat sera after intragastric administration of the water extracts of Puerariae Lobatae Radix(PLR) and Puerariae Thomsonii Radix(PTR). After the respective intragastric administration of PLR and PTR extracts, blood samples were collected from the orbital vein. The serum samples were treated by protein precipitation method with methanol and acetonitrile at a ratio of 1â¶1 and then passed through Agilent ZORBAX RRHD SB-C_(18) column(3 mm×100 mm, 1.8 µm) and Agilent SB-C_(18) pre-column(3 mm×5 mm, 1.8 µm) with 0.1% formic acid aqueous solution(A)-acetonitrile(B) as the mobile phase. The elution was performed at the flow rate of 0.25 mL·min~(-1), the column temperature of 40 â, and the injection volume of 2 µL. By comparison of the total ion chromatogram and secondary fragment ion information of PLR and PTR water extracts, PLR-and PTR-containing sera, and blank serum, we found 42 migrating components(including 17 prototype components and 25 metabolites) in the sera of rats treated with PLR and 35 migrating components(including 15 prototype components and 20 metabolites) in the sera of rats treated with PTR. Thirty-three common components were shared by the two treatments, including 13 prototype components and 20 metabolites. The differences of migrating components in the PLR-and PTR-treated rat sera provide a scientific basis for further study of the active components and quality markers of PLR and PTR.
Asunto(s)
Medicamentos Herbarios Chinos , Pueraria , Animales , Raíces de Plantas , Ratas , SueroRESUMEN
Schisandrae Chinensis Fructus (SCF) was a Traditional Chinese Medicine for protecting liver. However, underlying therapeutic mechanisms of these bioactive lignans from SCF similar hepatoprotective effects against drug-induced liver injury (DILI) by acetaminophen (APAP) are still unclear. This study aims to discover the potential regulation mechanisms of Schisandrol A in the treatment of DILI by APAP. The integrated UPLC-Q-TOF/MS, pharmacodynamic study, histopathological combination with network pharmacology and molecular docking technology were used to explore the potential mechanisms. The results showed that Schisandrol A reduced the level of AST, ALT, MDA, PNP, TNF-α and IL-1ß, increased the levels of the GSH against acute liver failure. Additionally, Schisandrol A could improve the morphological characteristics of DILI by APAP in mice with liver tissue. Molecular docking results had showed that Schisandrol A with high scores when docking with COX-2, ALOX5, CYP2E1, CYP2C9, CYP2C19, EGFR SRC, Nrf2, MAPK14 and MAPK8. The study demonstrated that Schisandrol A could play critical roles in DILI by APAP via regulating TNF signaling pathway, inhibiting oxidative stress, inflammation and inhibiting the activities of cytochrome P450 enzymes, which contributed to searching for leading compounds and the development of new drugs for DILI by APAP.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Ciclooctanos/uso terapéutico , Lignanos/uso terapéutico , Simulación del Acoplamiento Molecular , Acetaminofén , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos ICR , Estructura Molecular , Relación Estructura-ActividadRESUMEN
CONTEXT: Chloranthus serratus (Thunb.) Roem. et Schult. (Chloranthaceae) is an herb widely used as a folk medicine treating inflammatory diseases, although it is toxic. OBJECTIVE: To investigate hepatotoxicity and related mechanisms induced by ethanol extracts of different parts of C. serratus in rats. MATERIALS AND METHODS: Sprague Dawley rats were divided into control (Con), ethanol extract of roots (ER), stems (ES), and leaves (EL) groups, and acute oral toxicity studies were conducted. The rats received doses of 4.14, 3.20, and 1.16 g/kg/d extracts for 14 days, respectively. Liver index, liver function and oxidative stress biomarkers, liver pathology, ultrastructure, TNF-α, ICAM-1, and Nrf2/HO-1 proteins expression levels were determined. RESULTS: The LD50 of ER, ES, and EL were higher than 10.35, 8.05, and 2.90 g/kg/p.o., respectively. The liver indexes in the extract groups increased significantly. EL dramatically increased TP, GLB, AST, ALT, ALP, TBA, MDA, ICAM-1, and TNF-α levels (p < 0.01), and induced the most obvious pathological and ultrastructural changes. ES and EL obviously decreased the T-SOD, GSH, CAT, and CHOL levels. Nrf2 and HO-1 proteins expression was reduced significantly in ES (0.77 ± 0.06, 2.33 ± 0.20) and EL (0.23 ± 0.04, 2.14 ± 0.16) groups, and reduced slightly in ER (1.08 ± 0.10; 3.39 ± 0.21) group. DISCUSSION AND CONCLUSION: ES and EL induce stronger hepatotoxicity than ER through oxidative stress and the Nrf2/HO-1 pathway, and the root is a better medicinal part, which provides a basis for clinical research, safe applications, and reasonable development of C. serratus.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Medicamentos Herbarios Chinos/toxicidad , Estrés Oxidativo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/mortalidad , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/análisis , Hemo Oxigenasa (Desciclizante)/fisiología , Molécula 1 de Adhesión Intercelular/análisis , Hígado/patología , Masculino , Factor 2 Relacionado con NF-E2/fisiología , Ratas , Ratas Sprague-Dawley , Aumento de Peso/efectos de los fármacosRESUMEN
Context: Chloranthus serratus [(Thunb.) Roem. et Schult, (Chloranthaceae)] is a folk medicine used for the treatment of rheumatoid arthritis.Objective: The aim of this study was to investigate anti-arthritic effects of the ethanol extracts of the roots (ER), stems (ES) and leaves (EL) of C. serratus on adjuvant arthritis rats and related mechanisms.Materials and methods: The rats were immunized by intradermal injection of complete Freund's adjuvant (CFA, 0.18 mL) into the right hind feet, and received intragastric administrations of the ER, ES and EL (2.07, 1.61 and 0.58 g/kg/d, respectively) for 14 days. The anti-arthritic activity was assessed by swelling rates, serum indicators, antioxidant capacity, histopathological and immunohistochemical analyses.Results: The LD50 of the ER, ES and EL was higher than 10.35, 8.05 and 2.90 g/kg/p.o., respectively. Extract treatments decreased swelling rates, tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), interleukin 1 beta (IL-1ß), migration inhibitory factor 1 (MIF-1), immunoglobulin G (IgG) and immunoglobulin M (IgM) levels and positive expression of VEGF in the arthritic rats (p < 0.01 or p < 0.05). The ER significantly decreased NO (3.91 ± 0.61 µmol/L), IL-6 (75.67 ± 16.83 pg/mL) and malondialdehyde (MDA) (2.28 ± 0.32 nmol/mL) contents and clearly increased IFN-γ (2082 ± 220.93 pg/mL) and superoxide dismutase (SOD) (601.98 ± 38.40 U/mL) levels. The ES and EL did not reverse the changes in some indicators. All the extracts alleviated inflammatory cell infiltration and synovial cell proliferation. Among them, the ER was the most pronounced.Discussion and conclusions: ER exerts the most promising effects, as shown by inhibiting the releases of inflammatory cytokines and enhancing antioxidant capacity, which provides a scientific basis for further research on C. serratus and its clinical applications.
Asunto(s)
Antiinflamatorios/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Hojas de la Planta , Raíces de Plantas , Tallos de la Planta , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antirreumáticos/aislamiento & purificación , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Artritis Experimental/sangre , Artritis Experimental/patología , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Adyuvante de Freund , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/sangre , Masculino , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Sprague-Dawley , Resultado del TratamientoRESUMEN
The green tea catechin epigallocatechin gallate (EGCG) exhibits antiviral activity against various viruses. Whether EGCG also inhibits the infectivity of circovirus remains unclear. In this study, we demonstrated the antiviral effect of EGCG on porcine circovirus type 2 (PCV2). EGCG targets PCV2 virions directly and blocks the attachment of virions to host cells. The microscale thermophoresis assay showed EGCG could interact with PCV2 capsid protein in vitro with considerable affinity (Kd = 98.03 ± 4.76 µM), thereby interfering with the binding of the capsid to the cell surface receptor heparan sulfate. The molecular docking analysis of capsid-EGCG interaction identified the key amino acids which formed the binding pocket accommodating EGCG. Amino acids ARG51, ASP70, ARG73 and ASP78 of capsid were found to be critical for maintaining the binding, and the arginine residues were also essential for the electrostatic interaction with heparan sulfate. The rescued mutant viruses also confirm the importance of the key amino acids of the capsid to the antiviral effect of EGCG. Our findings suggest that catechins could act as anti-infective agents against circovirus invasion, as well as provide the basic information for the development and synthesis of structure-based anti-circovirus drugs.
Asunto(s)
Antivirales/farmacología , Cápside/metabolismo , Catequina/análogos & derivados , Circovirus/efectos de los fármacos , Acoplamiento Viral/efectos de los fármacos , Animales , Cápside/química , Cápside/efectos de los fármacos , Catequina/farmacología , Línea Celular , Circovirus/clasificación , Simulación del Acoplamiento Molecular , Porcinos , Té/químicaRESUMEN
Previous studies have demonstrated antitumor efficacy of Virulizin in several human tumor xenograft models and a critical role for macrophages in the antitumor mechanism of Virulizin. Although there is growing support for an immune stimulatory mechanism of action for Virulizin, the details remain to be elucidated. The aim of this study was to determine whether infiltration of natural killer (NK) cells into xenografted tumors is altered by Virulizin treatment, and whether such alterations contribute to the antitumor activity of Virulizin. Immunohistochemical analysis demonstrated that xenografted tumors from Virulizin-treated mice had an increase in infiltration of F4/80(+) (macrophages) and NK1.1(+) (NK) cells. The increase in NK1.1(+) cell infiltration occurred at an early stage of Virulizin treatment, which correlated with an early sign of apoptosis. In addition, Virulizin resulted in an increase in the number of NK cells in the spleens, and NK cells isolated from the spleen exhibited increased cytotoxicity to tumor cells in vitro. In NK cell-deficient SCID-beige mice, the antitumor activity of Virulizin was compromised, providing additional support to the hypothesis that NK cells are necessary for inhibition of tumor growth by Virulizin. Finally, depletion of macrophages resulted in the loss of Virulizin-induced increase in NK1.1(+) cell infiltration into xenografted tumors, suggesting the involvement of macrophages in NK cell infiltration into tumors. Taken together, these results strongly support a mechanism in which Virulizin stimulates a sustained expansion and infiltration of NK cells and macrophages into tumors with subsequent activation of NK cells that is responsible for the observed antitumor activity.