Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Fluoresc ; 33(3): 1191-1200, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36629965

RESUMEN

Liver fatty acid binding protein (L-FABP) is an intercellular lipid chaperone protein that selectively combines with unsaturated free fatty acids and transports them to mitochondria or peroxisomes. L-FABP is a promising biomarker for the early detection of renal diseases in humans. Herein a chemiluminescence method (CLIA) was demonstrated to measure the level of urinary L-FABP in the urinary samples. An anti-(L-FABP)-magnetic beads complex was prepared to capture the analyte target. Sensitivity, precision, accuracy, interference effect, high-dose hook effect of the developed assay were evaluated. Under the suitable experimental parameters, the established method have a wide linear range (0.01-10 ng/mL) and also showed a sufficiently low limit of detection of 0.0060 ng/mL. Besides, the satisfactory recoveries of the method in the urinary were ranged from 97.74%-112.32%, which was well within the requirement of clinical analysis. Furthermore, this proposed method has been successfully applied to the clinical determination of L-FABP in patients who have been diagnosed with kidney disease. The results showed that CLIA could accurately and rapidly determine the urinary level of L-FABP with high-throughput, which could be useful as a new tool to predict complications in patients with kidney disease. The clinical trial was approved by Shuyang Hospital of Traditional Chinese Medicine Ethics Committee: 20,210,202-001 at February 2, 2021.


Asunto(s)
Enfermedades Renales , Luminiscencia , Humanos , Enfermedades Renales/orina , Inmunoensayo , Proteínas de Unión a Ácidos Grasos/orina , Biomarcadores/orina , Hígado
2.
Artículo en Inglés | MEDLINE | ID: mdl-32454849

RESUMEN

OBJECTIVE: To investigate the efficacy of Niao Du Kang (NDK) mixture in renal fibrosis of rats and to explore the mechanism underlying the effect of NDK on renal fibrosis. METHODS: Unilateral ureteral obstruction (UUO) was used to replicate a rat renal interstitial fibrosis model. The drug-administered groups were given 20 ml/kg (NDK-H), 10 ml/kg (NDK-M), and 5 ml/kg (NDK-L) NDK mixture once a day for 21 days beginning 48 hours after surgery. The 24-hour urine protein and serum creatinine (CR) levels in the sham group rats, UUO rats, and NDK mixture-treated rats were measured after the last administration. The pathological changes of rat kidney tissue were observed by HE staining. The degree of fibrosis was observed by Masson's staining and scored. The expression levels of TGF-ß, α-SMA mRNA, and mir-129-5p in kidney were detected by qRT-PCR. HK-2 cells were treated with 5 ng/ml TGF-ß to induce HK-2 cell fibrosis. The expression levels of TGF-ß, α-SMA mRNA, and mir-129-5p in HK-2 cells were detected by qRT-PCR. TargetScan predicted the target gene of mir-129-5p, HK-2 cells were transfected with mir-129-5p mimic, and an overexpressed mir-129-5p HK-2 cell model was constructed. qRT-PCR was used to detect the expression of PDPK1 mRNA. Western blot was used to detect the expression of PDPK1, AKT, and p-AKT in HK-2 cells induced by TGF-ß and in UUO rats. RESULTS: NDK mixture significantly reduced the 24-hour urine protein and CR levels of UUO rats. HE staining showed that the NDK mixture group exhibited a significantly reduced degree of renal interstitial fibrosis. NDK mixture also reduced the expression of TGF-ß and α-SMA, and the middle-dose group showed a better therapeutic effect. In vitro studies showed that NDK mixture-containing serum increased the expression of mir-129-5p to reduce renal fibrosis. In addition, NDK mixture increased the expression of mir-129-5p in vivo. Further studies indicated that mir-129-5p could target PDPKl to reduce its expression. The NDK-containing serum group also exhibited reduced expression of PDPK1. CONCLUSION: NDK mixture can significantly improve renal function and improve renal fibrosis in UUO model rats. Furthermore, NDK mixture can inhibit the expression of PDPK1 by upregulating the expression of mir-129-5p and then inhibiting the PI3K/AKT pathway to improve renal fibrosis.

3.
FASEB J ; 34(1): 1065-1078, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914668

RESUMEN

The hypoglycemic effect of Phellinus linteus polysaccharide extract (PLPE) has been documented in several previous studies, but the functional interactions among PLPE, gut microbiota, and the hypoglycemic effect remain unclear. We examined the regulatory effect of PLPE on gut microbiota, and the molecular mechanism underlying improvement of insulin resistance, using a type 2 diabetic rat model. Here, 24 male Sprague-Dawley rats were randomly divided into four groups that were subjected to intervention of saline (normal and model control group), metformin (120 mg/kg.bw), and PLPE (600 mg/kg.bw) by oral administration. After 8 weeks of treatment, PLPE increased levels of short-chain fatty acids (SCFAs) by enhancing abundance of SCFA-producing bacteria. SCFAs maintained intestinal barrier function and reduced lipopolysaccharides content in blood, thereby helping to reduce systemic inflammation and reverse insulin resistance. Our findings suggest that PLPE (in which polysaccharides are the major component) has potential application as a prebiotic for regulating gut microbiota composition in diabetic patients.


Asunto(s)
Regulación de la Expresión Génica , Resistencia a la Insulina , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Animales , Proteínas Portadoras/metabolismo , Ácidos Grasos Volátiles/sangre , Microbioma Gastrointestinal , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/farmacología , Insulina/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/sangre , Masculino , Phellinus , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
4.
Nutrients ; 11(2)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704063

RESUMEN

Hypoglycemic and hypolipidemic effects of P. linteus have been observed in numerous studies, but the underlying molecular mechanisms are unclear. In this study, we prepared P. linteus extract (PLE) from mycelia of solid-state culture, and evaluated its hypoglycemic and hypolipidemic effects in rat models of high-fat diet (HFD)-induced and low-dose streptozotocin (STZ)-induced type 2 diabetes. PLE treatment effectively reduced blood glucose levels, and improved insulin resistance and lipid and lipoprotein profiles. The hypoglycemic effect of PLE was based on inhibition of key hepatic gluconeogenesis enzymes (FBPase, G6Pase) expression and hepatic glycogen degradation, and consequent reduction of hepatic glucose production. PLE also: (i) enhanced expression of CPT1A and ACOX1 (key proteins involved in fatty acid ß-oxidation) and low-density lipoprotein receptor (LDLR) in liver, thus promoting clearance of triglycerides and LDL-C; (ii) inhibited expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in liver, thus reducing cholesterol production; (iii) displayed strong hepatoprotective and renal protective effects. Our findings indicate that PLE has strong potential functional food application in adjuvant treatment of type 2 diabetes with dyslipidemia.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hiperlipidemias/tratamiento farmacológico , Lípidos/sangre , Extractos Vegetales/uso terapéutico , Animales , Hipoglucemiantes/uso terapéutico , Masculino , Metformina/uso terapéutico , Phellinus , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA