Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioresour Technol ; 369: 128488, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36528181

RESUMEN

This paper aims to explore the role of proline (Pro) in the production of biomass and astaxanthin (AST) in stress-induced Haematococcus pluvialis. The astaxanthin content and productivity were 24.02 mg g-1 and 2.22 mg/L d-1 under abiotic stresses, respectively. After 100 µM Pro supplementation, the biomass, AST and lipid contents reached 1.43 g/L, 29.91 mg g-1 and 56.79 %, which were enhanced by 19.16 %, 33.52 % and 11.08 %, respectively, compared to the control. Pro-treated regulated chlorophyll, carbohydrate and protein accumulation and upregulated carotenogenic, lipogenic and antioxidant enzymes-associated gene levels; as well as increased endogenous Pro content, but reduced ROS (Reactive oxygen species) and MDA (Malondialdehyde) levels and alleviated oxidative stress, which might be involved in AST biosynthesis. Further data showed Pro has a positive role in biomass and AST coaccumulation in different H. pluvialis species, suggesting application of Pro was an effective strategy to improve AST productivity of H. pluvialis.


Asunto(s)
Chlorophyceae , Chlorophyta , Chlorophyta/metabolismo , Chlorophyceae/metabolismo , Xantófilas/metabolismo , Clorofila/metabolismo
2.
Bioresour Technol ; 366: 128222, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36328171

RESUMEN

In the present study, exogenous myo-inositol (MI) was applied to induce natural astaxanthin and biolipid accumulation in Haematococcus pluvialis. Under 200 µM MI, algal cells exhibited 62.11 % and 34.67 % increases in astaxanthin and lipid content, respectively, compared to the control. The carotenogenesis and lipogenesis genes were upregulated by induction of MI. Interestingly, MI addition elevated the ethylene (ETH) content and activated antioxidant enzyme-associated gene levels, which could be involved in alleviating oxidative stress. Further data showed that the ETH signal played a positive function in stimulating astaxanthin biosynthesis under MI induction. Supplementation with ethephon plus MI boosted the astaxanthin content to 33.08 ± 0.03 mg g-1 by further upregulating astaxanthin biosynthesis genes and blocking reactive oxidative species (ROS) levels, and vice versa under ETH inhibition. This study provides a potential induction approach for natural astaxanthin production and explains the role of ethylene signalling in regulating astaxanthin synthesis by H. pluvialis.


Asunto(s)
Chlorophyceae , Estrés Oxidativo , Etilenos , Lípidos , Inositol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA