Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mater Chem B ; 12(17): 4148-4161, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591180

RESUMEN

Cyaonoside A (CyA), derived from the natural Chinese medicine, Cyathula officinalis Kuan, which was for a long time used to treat knee injuries and relieve joint pain in traditional Chinese medicine, showed an unclear mechanism for protecting cartilage. In addition, CyA was poorly hydrosoluble and incapable of being injected directly into the joint cavity, which limited its clinical application. This study reveals that CyA resisted IL-1ß-mediated chondrogenic inflammation and apoptosis. Next, transcriptome sequencing is used to explore the potential mechanisms underlying CyA regulation of MSC chondrogenic differentiation. Based on these findings, CyA-loaded composite hydrogel microspheres (HLC) were developed and they possessed satisfactory loading efficiency, a suitable degradation rate and good biocompatibility. HLC increased chondrogenic anabolic gene (Acan, COL2A, and SOX9) expression, while downregulating the expression of the catabolic marker MMP13 in vitro. In the osteoarthritis mouse model, HLC demonstrated promising therapeutic capabilities by protecting the integrity of articular cartilage. In conclusion, this study provides insights into the regulatory mechanisms of CyA for chondrocytes and proposes a composite hydrogel microsphere-based advanced therapeutic strategy for osteoarthritis.


Asunto(s)
Condrocitos , Hidrogeles , Microesferas , Osteoartritis , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Animales , Hidrogeles/química , Hidrogeles/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Ratones , Inflamación/tratamiento farmacológico , Ratones Endogámicos C57BL , Masculino , Tamaño de la Partícula , Células Cultivadas
2.
Fitoterapia ; 175: 105883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38458497

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. As one of the major degradation pathways, autophagy plays a pivotal role in maintaining the effective turnover of proteins and damaged organelles in cells. Lewy bodies composed of α-synuclein (α-syn) abnormally aggregated in the substantia nigra are important pathological features of PD, and autophagy dysfunction is considered to be an important factor leading to abnormal aggregation of α-syn. Phenylpropionamides (PHS) in the seed of Cannabis sativa L. have a protective effect on neuroinflammation and antioxidant activity. However, the therapeutic role of PHS in PD is unclear. In this study, the seeds of Cannabis sativa L. were extracted under reflux with 60% EtOH-H2O, and the 60% EtOH-H2O elution fraction was identified as PHS with the UPLC-QTOF-MS. The 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice was used for behavioral and pharmacodynamic experiments. Behavioral symptoms were improved, Nissl-stained and TH-positive neurons in the substantia nigra were significantly increased in PHS-treated MPTP-induced PD model mice. Compared with the model group, PHS treatment reduced the expression level of α-syn, and the expression of TH increased significantly by western blotting, compared with the model group, the PHS group suppressed Caspase 3 and Bax expression and promoted Bcl-2 expression and levels of p62 decreased significantly, the ratio of LC3-II/I and p-mTOR/mTOR in the PHS group had a downward trend, suggesting that the therapeutic effect of PHS on MPTP-induced PD model mice may be triggered by the regulation of autophagy.


Asunto(s)
Autofagia , Cannabis , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Semillas , Animales , Autofagia/efectos de los fármacos , Ratones , Semillas/química , Cannabis/química , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/aislamiento & purificación , Enfermedad de Parkinson/tratamiento farmacológico , Sustancia Negra/efectos de los fármacos , Modelos Animales de Enfermedad , Serina-Treonina Quinasas TOR/metabolismo
3.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38399454

RESUMEN

Aurantii Fructus (AF) and Aurantii Fructus Immaturus (AFI) have been used for thousands of years as traditional Chinese medicine (TCM) with sedative effects. Modern studies have shown that Citrus plants also have protective effects on the nervous system. However, the effective substances and mechanisms of action in Citrus TCMs still remain unclear. In order to explore the pharmacodynamic profiles of identified substances and the action mechanism of these herbs, a comprehensive approach combining ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS) analysis and network pharmacology was employed. Firstly, UNIFI 2.1.1 software was used to identify the chemical characteristics of AF and AFI. Secondly, the SwissTargetPrediction database was used to predict the targets of chemical components in AF and AFI. Targets for neuroprotection were also collected from GeneCards: The Human Gene Database (GeneCards-Human Genes|Gene Database|Gene Search). The networks between targets and compounds or diseases were then constructed using Cytoscape 3.9.1. Finally, the Annotation, Visualization and Integrated Discovery Database (DAVID) (DAVID Functional Annotation Bioinformatics Microarray Analysis) was used for GO and pathway enrichment analysis. The results showed that 50 of 188 compounds in AF and AFI may have neuroprotective biological activities. These activities are associated with the regulatory effects of related components on 146 important signaling pathways, derived from the KEGG (KEGG: Kyoto Encyclopedia of Genes and Genomes), such as neurodegeneration (hsa05022), the Alzheimer's disease pathway (hsa05010), the NF-kappa B signaling pathway (hsa04064), the hypoxia-inducible factor (HIF)-1 signaling pathway (hsa04066), apoptosis (hsa04210), the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance signaling pathway (hsa01521), and others, by targeting 108 proteins, including xanthine dehydrogenase (XDH), glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B), and glucose-6-phosphate dehydrogenase (G6PD), among others. These targets are thought to be related to inflammation, neural function and cell growth.

4.
Biochem Biophys Rep ; 37: 101626, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38371528

RESUMEN

The ongoing coronavirus infectious disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still urgently requires effective treatments. The 3C-like (3CL) protease of SARS-CoV-2 is a highly conserved cysteine protease that plays an important role in the viral life cycle and host inflammation, providing an ideal target for developing broad-spectrum antiviral drugs. Herein, we describe the discovery of a large number of herbs mainly produced in Heilongjiang Province, China, that exhibited different inhibitory activities against SARS-CoV-2 3CL protease. We confirmed that Syringa reticulata, which is used for clinical treatment of chronic bronchitis and asthma, is a specific and potent inhibitor of 3CL protease. A 70 % ethanol extract of S. reticulata dose-dependently inhibited the cleavage activity of 3CL protease in a fluorescence resonance energy transfer assay with an IC50 value of 0.0018 mg/mL, but had minimal effect in pseudovirus-based cell entry and luciferase-based RNA-dependent RNA polymerase assays. These results suggest that S. reticulata will be a potential leading candidate for COVID-19 treatment.

5.
Phytomedicine ; 123: 155198, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006806

RESUMEN

BACKGROUND AND PURPOSE: Epiberberine (EPI) is one of the most important bioalkaloid found in the rhizome of Coptis chinensis, which has been observed to exhibit pharmaceutical effects against gastric cancer (GC). Nevertheless, the potential mechanism of EPI against GC cells still remains unclear. This study aimed to identify the core receptor on GC cells through which EPI inhibited the growth of GC cells and to explore the underlying inhibitory mechanisms. METHODS: To identify hub receptor targets that respond to EPI treatment, RNA sequencing (RNA-Seq) data from a tumor-bearing mouse model were analyzed using bioinformatics method and molecular docking. The binding interaction between EPI and GABRB3 was validated through western blotting based-cellular thermal shift assay (WB-CETSA). To further verify the binding region between EPI and GABRB3 through circular dichroism (CD) chromatography, fragments of the extracellular and transmembrane domains of the GABRB3 protein were expressed and purified in vitro. Stable cell lines with the overexpression or knockdown of GABRB3 were established using the recombinant lentivirus system. MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)) assay, colony formation assay, invasion and migration experiments, and flow cytometry were conducted to validate the inhibitory effect of EPI on the GC cells via GABRB3. Additionally, western blotting was utilized to explore the potential inhibitory mechanisms. RESULTS: Through the combination of multiple bioinformatics methods and molecular docking, we found that the γ-aminobutyric acid type A receptor subunit -ß3 (GABRB3) might be the critical receptor target in response to EPI treatment. The results of WB-CETSA analysis indicated that EPI significantly promoted the thermostability of the GABRB3 protein. Importantly, EPI could directly bind to GABRB3 and alter the secondary structure of GABRB3 fragments similar to the natural agonist, γ-aminobutyric acid (GABA). The EPI-induced suppression of the malignant phenotype of GC cells was dependent on the presence of GABRB3. GABRB3 expression was positively correlated with TP53 in patients with GC. The binding of EPI to GABRB3 stimulated p53 accumulation in GC cells. This activated the p21/CDK1/cyclinB1 pathway, resulting in G2/M cell cycle arrest, and induced the Bcl-2/BAX/Caspase axis-dependent cell apoptosis. CONCLUSION: This study revealed the target receptor for EPI in GC cells and provided new insights into its anticancer mechanisms.


Asunto(s)
Berberina/análogos & derivados , Neoplasias Gástricas , Humanos , Ratones , Animales , Neoplasias Gástricas/genética , Proliferación Celular , Línea Celular Tumoral , Receptores de GABA/metabolismo , Proteína p53 Supresora de Tumor , Simulación del Acoplamiento Molecular , Puntos de Control de la Fase G2 del Ciclo Celular , Apoptosis
6.
J Ethnopharmacol ; 322: 117600, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38103844

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic steatohepatitis (NASH) has emerged as a major cause of cirrhosis and hepatocellular carcinoma, posing a significant threat to public health. Rhizoma Coptidis, a traditional Chinese medicinal herb has been shown to have significant curative effects on liver diseases. Total Rhizoma Coptidis Alkaloids (TRCA) is a primarily alkaloid mixture extracted from Rhizoma Coptidis, and its constituents are widely accepted to have hepatoprotective effects. AIM OF THE STUDY: This work aimed to investigate the efficacy and potential mechanisms of TRCA in ameliorating NASH through both in vitro experiments and in vivo mouse models. MATERIALS AND METHODS: The study employed a mice model induced by a high-fat diet (HFD) to evaluate the effectiveness and pharmacological mechanisms of TRCA in alleviating NASH. Transcriptomic sequencing and network pharmacology were used to explore the possible targets and mechanisms of TRCA to ameliorate NASH. Further validation was performed in free fatty acid (FFA)-induced human hepatocytes (LO2) and human hepatocellular carcinoma cells (HepG2). RESULTS: TRCA effectively ameliorated the main features of NASH such as lipid accumulation, hepatitis and hepatic fibrosis in the liver tissue of mice induced by HFD, as well as improved glucose tolerance and insulin resistance in mice. Combined with transcriptomic and network pharmacological analyses, 68 core targets associated with the improvement of NASH by TRCA were obtained. According to the KEGG results, the core targets were significantly enriched in the PI3K-AKT signaling pathway whereas TRCA ameliorated the aberrant down-regulation of the PI3K-AKT signaling pathway induced by HFD. Furthermore, the five highest-ranked genes were obtained by PPI network analysis. Moreover, our findings suggest that TRCA may impede the progression of HFD-induced NASH by regulating the expression of PPARG, MMP9, ALB, CCL2, and EGFR. CONCLUSIONS: TRCA can ameliorate HFD-induced liver injury by modulating aberrant downregulation of the PI3K-AKT signaling pathway. Key proteins such as PPARG, MMP9, ALB, CCL2, and EGFR may be critical targets for TRCA to ameliorate NASH. This finding supports using Rhizoma Coptidis, a well-known herbal medicine, as a potential therapeutic agent for NASH.


Asunto(s)
Alcaloides , Antineoplásicos , Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metaloproteinasa 9 de la Matriz , Carcinoma Hepatocelular/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Farmacología en Red , PPAR gamma , Alcaloides/farmacología , Alcaloides/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Perfilación de la Expresión Génica , Receptores ErbB
7.
Phytomedicine ; 121: 155096, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37769554

RESUMEN

BACKGROUND: Polyphyllins are secondary metabolites that inhibit the growth of various tumours; however, clinical trials on their use are lacking. HYPOTHESIS/PURPOSE: In this study, we aimed to evaluate the antitumour efficacy of polyphyllins in animal models. STUDY DESIGN: Systematic review and meta-analysis. METHODS: Electronic bibliographic databases including PubMed, Web of Science, China Science and Technology Journal Database, Wanfang Data, and China National Knowledge Infrastructure were searched for relevant articles. The Systematic Review Centre for Laboratory Animal Experimentation's Risk of Bias tool was used to assess methodological quality. RevMan V.5.4 (Cochrane) and Stata MP 17 software were used to perform a meta-analysis. RESULTS: Thirty articles were analysed including 33 independent experiments and 452 animals in this paper. Overall, tumour volume (standardised mean difference [SMD]: -3.35; 95 % confidence interval [CI]: -4.27 to -2.43; p < 0.00001) and tumour weight (SMD: -3.79; 95% CI: -4.75 to -2.82; p < 0.00001) were reduced by polyphyllins, which showed a good cancer therapeutic effect; mouse weight (SMD: -0.22; 95% CI: -0.61 to -0.18; p = 0.28) was insignificantly different, which indicated that polyphyllins did not affect the growth of the mice within the test range. Moreover, the molecular mechanisms of the antitumour activity of polyphyllins were explained, including the P53, NF-kB, AMPK, and ERK signalling pathways. CONCLUSION: Polyphyllins inhibit the growth of cancers within the experimental dose. However, due to heterogeneity of the results of the included studies, more studies are needed to support this conclusion.


Asunto(s)
Neoplasias , Animales , Ratones , Neoplasias/tratamiento farmacológico , China
8.
ACS Omega ; 8(25): 23120-23129, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396285

RESUMEN

A complementary doped source-based reconfigurable Schottky diode (CDS-RSD) is proposed for the first time. Unlike other types of reconfigurable devices that have source and drain (S/D) regions with the same material, this has a complementary doped source region as well as a metal silicide drain region. Compared to three-terminal reconfigurable transistors, which have both the program gate and control gate, the proposed CDS-RSD does not have a control gate but only a program gate for reconfiguration operation. The drain electrode of the CDS-RSD is not only the output terminal of the current signal but also the input terminal of the voltage signal. Therefore, it is a reconfigurable diode based on high Schottky barriers for both the conduction band and valence band of silicon, which formed on the interface between the silicon and drain electrode. Therefore, the CDS-RSD can be regarded as the simplification of the reconfigurable field effect transistor structure on the premise of retaining the reconfigurable function. The simplified CDS-RSD is more suitable for the improvement of logic gate circuit integration. A brief manufacture process is also proposed. The device performance has been verified through device simulation. The performance of the CDS-RSD as a single-device two-input equivalence logic gate has also been investigated.

9.
Environ Sci Pollut Res Int ; 30(6): 14902-14915, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36161587

RESUMEN

In order to explore the adsorption characteristics of phosphorus from molecules with different molecular structures and varying number of phosphate groups on metal-modified biochar, walnut shell biochar was modified with LaCl3 to prepare lanthanum-loaded biochar (BC-La). Adsorption of four polar components, namely phytic acid (IHP), adenosine-5'-disodium triphosphate (5-ATP), hydroxyethylidene diphosphonic acid (HEDP), and sodium pyrophosphate (PP), was studied. The adsorption properties and mechanism of phosphorus sorption by BC-La were analyzed by SEM-EDS and FTIR for the different structures. The results showed that the maximum adsorption capacity of BC-La for IHP, 5-ATP, HEDP, and PP was 85.85, 9.04, 15.80, and 14.45 mg/g, respectively. The adsorption capacity was positively correlated with the polarity of organic phosphorus. The adsorption behavior conformed to the quasi second-order kinetic fitting equation, and the increase of temperature was conducive to the removal of all four phosphorus pollutants. BC-La adsorbs IHP and HEDP mainly through electrostatic attraction. The adsorption of 5-ATP and PP is dominated by complexation. The La-modified biochar has broad prospects in water remediation, which can provide a theoretical basis for removal of different forms of phosphorus pollutants and prevention and control of water eutrophication.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Fósforo/química , Adsorción , Estructura Molecular , Ácido Etidrónico , Agua , Carbón Orgánico/química , Cinética , Adenosina Trifosfato
10.
ACS Sens ; 7(12): 3611-3633, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36455009

RESUMEN

Acoustic-based imaging techniques, including ultrasonography and photoacoustic imaging, are powerful noninvasive approaches for tumor imaging owing to sound transmission facilitation, deep tissue penetration, and high spatiotemporal resolution. Usually, imaging modes were classified into "always-on" mode and "activatable" mode. Conventional "always-on" acoustic-based probes often have difficulty distinguishing lesion regions of interest from surrounding healthy tissues due to poor target-to-background signal ratios. As compared, activatable probes have attracted attention with improved sensitivity, which can boost or amplify imaging signals only in response to specific biomolecular recognition or interactions. The tumor microenvironment (TME) exhibits abnormal physiological conditions that can be used to identify tumor sections from normal tissues. Various types of organic dyes and biomaterials can react with TME, leading to obvious changes in their optical properties. The TME also affects the self-assembly or aggregation state of nanoparticles, which can be used to design activatable imaging probes. Moreover, acoustic-based imaging probes and therapeutic agents can be coencapsulated into one nanocarrier to develop nanotheranostic probes, achieving tumor imaging and cooperative therapy. Satisfactorily, ultrasound waves not only accelerate the release of encapsulated therapeutic agents but also activate therapeutic agents to exert or enhance their therapeutic performance. Meanwhile, various photoacoustic probes can convert photon energy into heat under irradiation, achieving photoacoustic imaging and cooperative photothermal therapy. In this review, we focus on the recently developed TME-triggered ultrasound and photoacoustic theranostic probes for precise tumor imaging and targeted tumor therapy.


Asunto(s)
Neoplasias , Fototerapia , Humanos , Fototerapia/métodos , Medicina de Precisión , Microambiente Tumoral , Nanomedicina Teranóstica/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Acústica
11.
J Nanobiotechnology ; 20(1): 468, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329515

RESUMEN

The hypoimmunogenicity of tumors is one of the main bottlenecks of cancer immunotherapy. Enhancing tumor immunogenicity can improve the efficacy of tumor immunotherapy by increasing antigen exposure and presentation, and establishing an inflammatory microenvironment. Here, a multifunctional antigen trapping nanoparticle with indocyanine green (ICG), aluminum hydroxide (Al(OH)3) and oxaliplatin (OXA) (PPIAO) has been developed for tumor photoacoustic/ultrasound dual-modality imaging and therapy. The combination of photothermal/photodynamic therapy and chemotherapy induced tumor antigen exposure and release through immunogenic death of tumor cells. A timely capture and storage of antigens by aluminum hydroxide enabled dendritic cells to recognize and present those antigens spatiotemporally. In an ovarian tumor model, the photoacoustic-mediated PPIAO NPs combination therapy achieved a transition from "cold tumor" to "hot tumor" that promoted more CD8+ T lymphocytes activation in vivo and intratumoral infiltration, and successfully inhibited the growth of primary and metastatic tumors. An in situ tumor vaccine effect was produced from the treated tumor tissue, assisting mice against the recurrence of tumor cells. This study provided a simple and effective personalized tumor vaccine strategy for better treatment of metastatic and recurrent tumors. The developed multifunctional tumor antigen trapping nanoparticles may be a promising nanoplatform for integrating multimodal imaging monitoring, tumor treatment, and tumor vaccine immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Ratones , Animales , Fototerapia/métodos , Nanopartículas/uso terapéutico , Hidróxido de Aluminio , Línea Celular Tumoral , Verde de Indocianina , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/tratamiento farmacológico , Inmunoterapia , Antígenos de Neoplasias , Microambiente Tumoral
12.
Front Cardiovasc Med ; 9: 988799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148073

RESUMEN

Background: Multimorbidity, polypharmacy and inappropriate prescribing is common in elderly patients worldwide. We aimed to explore the current status of multimorbidity, polypharmacy and the appropriateness of pharmacological therapy among elderly patients with atrial fibrillation (AF) in China. Materials and methods: We randomly selected 500 patients aged 65 years or older from the China AF Registry study. Multimorbidity was defined as ≥2 comorbidities and polypharmacy was defined as ≥5 long-term prescribed drugs. Appropriateness of prescribing was evaluated using the Screening Tool of Older People's Prescriptions/Screening Tool to Alert to Right Treatment (STOPP/START) criteria version 2. Patients' attitudes toward polypharmacy were evaluated by the Patients' Attitudes Towards Deprescribing (PATD) questionnaire. Results: Among the 500 patients included (mean age 75.2 ± 6.7 years, 49.0% male), 98.0% had multimorbidity and 49.4% had polypharmacy. The prevalence of potentially inappropriate medications (PIMs) and potential prescribing omissions (PPOs) was 43.6% (n = 218) and 71.6% (n = 358), respectively. Traditional Chinese medicine attributed largely to PIMs. Anticoagulants were the most common PPOs. Many clinical factors increased the risk of PIMs and PPOs. However, polypharmacy increased the risk of PIMs (OR 2.70, 95%CI 1.78-4.11; p < 0.0001), but not PPOs. In addition, 73.7% patients with polypharmacy were willing to have one or more of their medications prescribed if advised by their doctor. Conclusion: Multimorbidity and polypharmacy were highly prevalent in elderly patients with AF in China. A high prevalence of inappropriate prescribing was also observed. Therefore, much more attention should be paid to the serious health problem in the elderly population.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35742476

RESUMEN

In order to improve the phosphate adsorption capacity of Ca-loaded biochar at a wide range of pH values, Ca (oyster shell) was loaded as Ca(OH)2 on the tobacco stalk biochar (Ca-BC), which was prepared by high-temperature calcination, ultrasonic treatment, and stirring impregnation method. The phosphorus removal performance of Ca-BC adsorption was studied by batch adsorption experiments, and the mechanism of Ca-BC adsorption and phosphorus removal was investigated by SEM-EDS, FTIR, and XRD. The results showed that after high-temperature calcination, oyster shells became CaO, then converted into Ca(OH)2 in the process of stirring impregnation and had activated the pore expansion effect of biochar. According to the Langmuir model, the adsorption capacity of Ca-BC for phosphate was 88.64 mg P/g, and the adsorption process followed pseudo-second-order kinetics. The Ca(OH)2 on the surface of biochar under the initial pH acidic condition preferentially neutralizes with H+ acid-base in solution, so that Ca-BC chemically precipitates with phosphate under alkaline conditions, which increases the adsorption capacity by 3-15 times compared with other Ca-loaded biochar. Ca-BC phosphate removal rate of livestock wastewater (pig and cattle farms) is 91~95%, whereas pond and domestic wastewater can be quantitatively removed. This study provides an experimental basis for efficient phosphorus removal by Ca-modified biochar and suggesting possible applications in real wastewater.


Asunto(s)
Ostreidae , Contaminantes Químicos del Agua , Adsorción , Animales , Carbonato de Calcio , Bovinos , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Fosfatos , Fósforo , Porcinos , Nicotiana , Aguas Residuales , Contaminantes Químicos del Agua/análisis
14.
Fish Shellfish Immunol ; 124: 372-379, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35430348

RESUMEN

Grouper iridovirus is a devastating pathogen that belongs to the genus Ranavirus. Based on the previous results that natural ingredient quercetin isolated from Illicium verum Hook. f. could effectively inhibit Singapore grouper iridovirus (SGIV) replication, suggesting that quercetin could serve as potential antiviral agent against grouper iridovirus. To know about whether quercetin has indirect antiviral activity against SGIV, this study made the investigation in vitro and in vivo, and the potential mechanism was also explored. Pretreating the cells with quercetin (12.5 µg/mL) significantly inhibited the replication of SGIV, similar results were also confirmed in vivo. Importantly, quercetin pretreatment could induce the expression of genes involved in type I interferon (IFN) system (IFN, STAT1, PKR, MxI and ISG15) and TLR9. It suggested that quercetin exerted the indirect antiviral activity against SGIV infection through promoting the recognition of SGIV and activating the IFN pathway to establish the antiviral status of host cell. Taken together, our results shedded light on the indirect antiviral function of natural ingredient quercetin, and clearly demonstrated that natural ingredient quercetin will be an excellent potential agent against SGIV infection in grouper aquaculture.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Iridovirus , Plantas Medicinales , Ranavirus , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Lubina/genética , Infecciones por Virus ADN/veterinaria , Quercetina/farmacología
15.
Food Sci Anim Resour ; 42(1): 1-17, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028570

RESUMEN

Lipids are one of the major macronutrients essential for adequate growth and maintenance of human health. Their structure is not only complex but also diverse, which makes systematic and holistic analyses challenging; consequently, little is known regarding the relationship between phenotype and mechanism of action. In recent years, rapid advancements have been made in the fields of lipidomics and bioinformatics. In comparison with traditional approaches, mass spectrometry-based lipidomics can rapidly identify as well as quantify >1,000 lipid species at the same time, facilitating comprehensive, robust analyses of lipids in tissues, cells, and body fluids. Accordingly, lipidomics is now being widely applied in various fields, particularly food and nutrition science. In this review, we discuss lipid classification, extraction techniques, and detection and analysis using lipidomics. We also cover how lipidomics is being used to assess food obtained from livestock and poultry. The information included herein should serve as a reference to determine how to characterize lipids in animal food samples, enhancing our understanding of the application of lipidomics in the field in animal husbandry.

16.
Environ Res ; 205: 112455, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863688

RESUMEN

The loss of soil organic phosphorus can easily cause water eutrophication. In order to effectively reduce the loss of soil organic phosphorus, this manuscript investigated the adsorption of soil organic phosphorus by lanthanum modified biochar (BC), traditional adsorbent gypsum (GY) and zeolite (ZE) by taking phytic acid as the representative. The adsorption isotherm model and kinetic models were used to fit the phosphorus absorption characteristics of the adsorbents. The effects of initial pH and temperature on the adsorption capacity were discussed, and the adsorption mechanism of each adsorbent was explained by means of FTIR and XRD. The results showed that the adsorption capacity of phytate phosphorus followed the trend of BCTS > GYTS > ZETS > TS (soil), and the maximum phosphorus adsorption capacity obtained from Langmuir isotherm for treatment with BCTS was 2.836 mg g-1, and the treatment had the strongest affinity for phytate phosphorus and also the ability to store phosphorus. The adsorption process fits well with Langmuir isotherm equation and pseudo-second-order kinetic equation, and the adsorption behavior of phytate phosphorus was mainly controlled by the chemisorption of monolayer. When the concentration of phytate phosphorus was 100 mg L-1, percentage of modified biochar added to the soil was 3% and the pH was 6, the adsorption capacity reached the maximum, and the maximum adsorption capacity was 2.000 mg g-1. The results of FTIR and XRD characterization showed that complexation was the main adsorption mechanism. In this study, the combination of modified biochar and soil phytate phosphorus can provide a good theoretical basis for reducing the loss of soil organic phosphorus.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Fósforo/química , Suelo , Contaminantes Químicos del Agua/análisis
17.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5930-5935, 2021 Nov.
Artículo en Chino | MEDLINE | ID: mdl-34951184

RESUMEN

This study adopted ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-QTOF-MS)-based untargeted metabolomic approaches for exploring the changes in endogenous metabolites of rat serum related to property differences between ginseng and American ginseng. Then the action mechanisms of them with warm and cool properties and the effects of processing on their property changes were investigated. Based on principal component analysis(PCA), the differences in metabolite profiles between ginseng, red ginseng, American ginseng, and red American ginseng were compared. After that, 16 potential differential endogenous biomarkers were identified by orthogonal partial least squares discriminant analysis(OPLS-DA) and online database searching. And the related metabolic pathways were systematically analyzed. By comparing content variations of these 16 potential differential endogenous biomarkers, we have found that 10 potential differential biomarkers were responsible for the warm property of ginseng and red ginseng, and 9 were related to the cool property of American ginseng and red American ginseng. As demonstrated by in-depth analysis of related metabolic pathways of differential biomarkers, ginseng and American ginseng mainly played a role in regulating the energy metabolism of amino acid, glycolysis, and fatty acids, during which they exhibited differences in property. The comparison of content variations of these differential endogenous between groups revealed that the energy metabolism of red ginseng group was stronger than that of ginseng group, consistent with the traditional processing theory that the warming and tonifying effects of ginseng could be enhanced after processing. The property of red American ginseng was similar to that of American ginseng, both cool in property, but American ginseng was cooler than red American ginseng. It can be seen that non-targeted metabolomic approaches can be utilized to study mechanisms underlying property differences of Chinese medicines and the effects of processing on their property changes.


Asunto(s)
Panax , Animales , Biomarcadores , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Espectrometría de Masas , Metabolómica , Ratas
18.
Acta Biomater ; 136: 546-557, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34536603

RESUMEN

The high risk of tumor recurrence presents a big challenge in melanoma therapy. Photothermal therapy (PTT) has merged as a powerful weapon against tumor in recent years, which produces tumor-associated antigens (TAA) and recruits dendritic cells (DCs) to tumor sites through immunogenic cell death (ICD) for immune activation. However, due to the lack of activation signals of DCs, the immune effect induced by PTT is not sufficient to inhibit the recurrence and proliferation of tumor. To efficiently cooperate PTT and immunotherapy to circumvent tumor recurrence, here we constructed a polydopamine (PDA) based core-shell nanoplatform loading CpG ODNs to elicit robust photothermal ablation and antitumor immune responses. Cationized polydopamine coated with hyaluronic acid (HA) shell was proven an efficient photothermal agent that increased the surface temperature of tumor by 16 °C and induced ICD. CpG ODNs effectively induced maturation of DCs by elevating the expression of co-stimulating markers. PTT combined with CpG ODNs achieved a remarkable synergistic treatment effect in the maturation of DCs and activation of T cells in melanoma-bearing mice model compared with PTT or CpG ODNs alone. Furthermore, in a tumor recurrence model, photothermal-immune combination therapy increased the infiltration of CTLs in distant tumor compared with PTT or CpG ODNs alone. The combination therapy overcame insufficient immunity at distant tumor caused by PTT alone and relieved immunosuppression microenvironment of the tumor. Hence, the PDA based core-shell nanoplatform presents a potent photo-immunotherapy against proliferation and recurrence of melanoma. STATEMENT OF SIGNIFICANCE: In order to solve the insufficient immunity induced by photothermal therapy (PTT), CpG ODNs were utilized to enhance the weak immune response mediated by PTT through inducing DCs maturation. Hence, we designed a polydopamine (PDA) based core-shell nanoplatform loading CpG ODNs followed by hyaluronic acid named PPP/CpG/HA to elicit robust photothermal ablation and antitumor immune responses. CpG ODNs were delivered to the tumor site through the targeting effect of the HA shell. The core-shell nanoplatform achieved a remarkable synergistic treatment effect in the maturation of DCs and activation of T cells, thereby overcoming insufficient immunity at distant tumor caused by PTT alone. The core-shell nanoplatform presents a potent photo-immunotherapy against proliferation and recurrence of melanoma.


Asunto(s)
Melanoma , Nanopartículas , Animales , Línea Celular Tumoral , Indoles/farmacología , Melanoma/terapia , Ratones , Fototerapia , Polímeros , Microambiente Tumoral
19.
J Sep Sci ; 44(18): 3497-3505, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34269520

RESUMEN

The basic properties of herbal medicines are cold, hot, warm, and cool. The differentiation of these properties is important for the diagnosis and treatment of diseases. Ginseng and American ginseng possess opposite properties of warm and cool, respectively. At present, the mechanisms and the influence of steaming leading to the differences in their properties are not clear and require further investigation. Therefore, nontargeted metabonomics based on liquid chromatography-mass spectrometry was applied to investigate the effects of ginseng, American ginseng, and their variants on the changes in endogenous metabolites in rat urine. A total of 19 potential biomarkers were screened out and identified, of which 17, 7, and 5, were respectively related to warm, cool, and both warm and cool properties with opposite effects. The metabolic pathways corresponded to fatty acids, lipids, glycolysis, and energy metabolisms. The warm and tonic effects of red ginseng are stronger than those of ginseng and consistent with the theory of traditional Chinese medicine. The red American ginseng has cool property; however, the degree of coolness is less than that of American ginseng. This study provides a reference methodology to understand the effects of processing and mechanisms associated with the differences in the properties of herbal medicines.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Panax , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem/métodos , Animales , Biomarcadores/metabolismo , Masculino , Panax/química , Panax/clasificación , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
20.
Antonie Van Leeuwenhoek ; 114(7): 1079-1089, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33895906

RESUMEN

Six aerobic Gram-negative bacteria were isolated from seawater in Guangdong Province, P.R. China. Cells were observed to be Gram-negative, aerobic, non-motile and non-spore forming. Growth of the designated type strain 19X3-30T occurred at a temperature range of 14-37 °C (optimum, 28 °C), a pH range of 6.0-8.0 (optimum, pH 7) and up to 7.5% NaCl (optimum, 1.5%; w/v), and was enhanced by CO2 and L-cysteine supplementation. The major polar lipids identified in strain 19X3-30T were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The principal cellular fatty acids profile showed the presence of anteiso-C15:0, anteiso-C17:0 and C18:0 (> 8% of total fatty acids), and the respiratory quinone was ubiquinone 8 (UQ-8). According to the analysis of 16S rRNA gene sequences, these strains represented a novel species within the family Fastidiosibacteraceae, sharing maximum similarities with Cysteiniphilum litorale DSM 101832T (96.6%) and Cysteiniphilum halobium DSM 103992T (95.3%). Phylogenetic dendrograms based on 16S rRNA gene and protein marker genes from the genomic sequences both indicated that the strains formed a monophyletic lineage closely linked to the genus Cysteiniphilum, which was also supported by the UPGMA dendrogram based on the MALDI-TOF MS profile. The genomic DNA G + C contents of six strains ranged from 38.0% to 38.1%. Based on different taxonomic genomic metrics, phylogeny and phenotypic features, we propose that the strains warrant the assignment to a novel species, for which the name Cysteiniphilum marinum sp. nov. is proposed. The type strain is 19X3-30T (= KCTC 82154T = CGMCC 1.18585T).


Asunto(s)
Fosfolípidos , Agua de Mar , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos , Gammaproteobacteria , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA