Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Animals (Basel) ; 13(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36766234

RESUMEN

This study aims to compare the fecal microbiome-metabolome response to copper sulfate (CuSO4) and copper glycinate (Cu-Gly) in pigs. Twelve Meishan gilts were allocated into the CuSO4 group and the Cu-Gly group (fed on a basal diet supplemented with 60 mg/kg copper from CuSO4 or Cu-Gly) paired in litter and body weight. After a two-week feeding trial, the Cu-Gly group had a higher copper digestibility, blood hemoglobin, and platelet volume and higher levels of plasma iron and insulin-like growth factor-1 than the CuSO4 group. The Cu-Gly treatment increased the abundance of the Lachnospiraceae family and the genera Lachnospiraceae XPB1014, Corprococcus_3, Anaerorhabdus_furcosa_group, Lachnospiraceae_FCS020_group, and Lachnospiraceae_NK4B4_group and decreased the abundance of the Synergistetes phylum and Peptostreptococcaceae family compared to the CuSO4 treatment. Moreover, the Cu-Gly group had a lower concentration of 20-Oxo-leukotriene E4 and higher concentrations of butyric acid, pentanoic acid, isopentanoic acid, coumarin, and Nb-p-Coumaroyl-tryptamine than the CuSO4 group. The abundance of Synergistetes was positively correlated with the fecal copper content and negatively correlated with the fecal butyric acid content. The abundance of the Lachnospiraceae_XPB1014_group genus was positively correlated with the plasma iron level and fecal contents of coumarin and butyric acid. In conclusion, Cu-Gly and CuSO4 could differentially affect fecal microbiota and metabolites, which partially contributes to the intestinal health of pigs in different manners.

2.
Food Chem ; 367: 130781, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391997

RESUMEN

The aim of this study was to investigate effects of dietary grape seed proanthocyanidin extract (GSPE) supplementation on meat quality, muscle fiber characteristics and antioxidant capacity of finishing pigs. The data showed GSPE increased pH24 h, redness, crude protein content and decreased shear force, drip loss48 h, lactate content and glycolytic potential in longissimus dorsi (LD) muscle, accompanied by increased contents of total polyunsaturated fatty acid (PUFA), n-3 PUFA, and the ratio of PUFA to saturated fatty acid. GSPE promoted MyHC I mRNA and slow MyHC protein expression, and increased slow-twitch fiber percentage. The activities of total antioxidant capacity, total superoxide dismutase, catalase and glutathione peroxidase in LD muscle were increased by GSPE while malondialdehyde content was decreased. Together, this study demonstrated that dietary GSPE supplementation can effectively improve the color, water-holding capacity, tenderness and nutritional value of pork, and increase slow-twitch fiber percentage and antioxidant capacity of finishing pigs.


Asunto(s)
Antioxidantes , Extracto de Semillas de Uva , Alimentación Animal/análisis , Suplementos Dietéticos , Carne/análisis , Fibras Musculares Esqueléticas , Proantocianidinas , Porcinos
3.
Gut Microbes ; 13(1): 1-19, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33550882

RESUMEN

Betaine is a natural compound present in commonly consumed foods and may have a potential role in the regulation of glucose and lipids metabolism. However, the underlying molecular mechanism of its action remains largely unknown. Here, we show that supplementation with betaine contributes to improved high-fat diet (HFD)-induced gut microbiota dysbiosis and increases anti-obesity strains such as Akkermansia muciniphila, Lactobacillus, and Bifidobacterium. In mice lacking gut microbiota, the functional role of betaine in preventing HFD-induced obesity, metabolic syndrome, and inactivation of brown adipose tissues are significantly reduced. Akkermansia muciniphila is an important regulator of betaine in improving microbiome ecology and increasing strains that produce short-chain fatty acids (SCFAs). Increasing two main members of SCFAs including acetate and butyrate can significantly regulate the levels of DNA methylation at host miR-378a promoter, thus preventing the development of obesity and glucose intolerance. However, these beneficial effects are partially abolished by Yin yang (YY1), a common target gene of the miR-378a family. Taken together, our findings demonstrate that betaine can improve obesity and associated MS via the gut microbiota-derived miR-378a/YY1 regulatory axis, and reveal a novel mechanism by which gut microbiota improve host health.


Asunto(s)
Fármacos Antiobesidad/farmacología , Betaína/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , MicroARNs/genética , Obesidad/prevención & control , Animales , Fármacos Antiobesidad/administración & dosificación , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Betaína/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Ácidos Grasos Volátiles/metabolismo , Femenino , Síndrome Metabólico/etiología , Síndrome Metabólico/genética , Síndrome Metabólico/microbiología , Síndrome Metabólico/prevención & control , Ratones , Obesidad/etiología , Obesidad/genética , Obesidad/microbiología , Factor de Transcripción YY1/genética
4.
Xenobiotica ; 50(11): 1352-1358, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29171786

RESUMEN

Genistein is a widely studied phytoestrogen. The effects of genistein on myoblasts were reported long ago, but the conclusions are controversial. In this study, we evaluated the effects of different concentrations of genistein on C2C12 myoblasts. Genistein treatment promoted myoblast proliferation in a dose-dependent manner in the concentration range of 0-2 µM/L, reaching its maximum effect at 2 µM/L. Proliferation then declined, and a concentration higher than 20 µM/L showed significant inhibition. In addition, genistein treatment promoted myoblast differentiation at a dose of 10 µM/L. However, at treatment concentrations higher than 10 µM/L, the effect on myoblast differentiation was rapidly inhibited as the concentration increased. Genistein treatment also down-regulated the expression of miR-222, resulting in increased expression of its target genes, MyoG, MyoD, and ERα and thereby promoting myoblast differentiation. Our results suggest that genistein has a dose-dependent and bidirectional regulation effect on myoblast proliferation and differentiation. We also found that genistein is a miRNA inducer, and it specifically affects the expression of miR-222 to regulate myoblast differentiation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Genisteína , Mioblastos/efectos de los fármacos , Fitoestrógenos , Humanos , Mioblastos/metabolismo , Mioblastos/fisiología
5.
Int J Mol Sci ; 19(9)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235878

RESUMEN

Guanidinoacetic acid (GAA), an amino acid derivative that is endogenous to animal tissues including muscle and nerve, has been reported to enhance muscular performance. MicroRNA (miRNA) is a post-transcriptional regulator that plays a key role in nutrient-mediated myogenesis. However, the effects of GAA on myogenic differentiation and skeletal muscle growth, and the potential regulatory mechanisms of miRNA in these processes have not been elucidated. In this study, we investigated the effects of GAA on proliferation, differentiation, and growth in C2C12 cells and mice. The results showed that GAA markedly inhibited the proliferation of myoblasts, along with the down-regulation of cyclin D1 (CCND1) and cyclin dependent kinase 4 (CDK4) mRNA expression, and the upregulation of cyclin dependent kinase inhibitor 1A (P21) mRNA expression. We also demonstrated that GAA treatment stimulated myogenic differentiation 1 (MyoD) and myogenin (MyoG) mRNA expression, resulting in an increase in the myotube fusion rate. Meanwhile, GAA supplementation promoted myotube growth through increase in total myosin heavy chain (MyHC) protein level, myotubes thickness and gastrocnemius muscle cross-sectional area. Furthermore, small RNA sequencing revealed that a total of eight miRNAs, including miR-133a-3p and miR-1a-3p cluster, showed differential expression after GAA supplementation. To further study the function of miR-133a-3p and miR-1a-3p in GAA-induced skeletal muscle growth, we transfected miR-133a-3p and miR-1a-3p mimics into myotube, which also induced muscle growth. Through bioinformatics and a dual-luciferase reporter system, the target genes of miR-133a-3p and miR-1a-3p were determined. These two miRNAs were shown to modulate the Akt/mTOR/S6K signaling pathway by restraining target gene expression. Taken together, these findings suggest that GAA supplementation can promote myoblast differentiation and skeletal muscle growth through miR-133a-3p- and miR-1a-3p-induced activation of the AKT/mTOR/S6K signaling pathway.


Asunto(s)
Glicina/análogos & derivados , MicroARNs/genética , Desarrollo de Músculos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Glicina/farmacología , Masculino , Ratones , MicroARNs/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/genética
6.
J Mol Med (Berl) ; 96(7): 685-700, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29876588

RESUMEN

Increasing evidence indicates that muscular dysfunction or alterations in skeletal muscle fiber-type composition not only are involved in muscle metabolism and function but also can limit functional capacity. Therefore, understanding the mechanisms regulating key events during skeletal myogenesis is necessary. Betaine is a naturally occurring component of commonly eaten foods. Here, we showed that 10 mM betaine supplementation in vitro significantly repressed myoblast proliferation and enhanced myoblast differentiation. This effect can be mediated by regulation of miR-29b-3p. Further analysis showed that betaine supplementation in vitro regulated skeletal muscle fiber-type composition through the induction of NFATc1 and the negative regulation of MyoD expression. Furthermore, mice fed with 10 mM betaine in water for 133 days showed no impairment in overall health. Consistently, betaine supplementation increased muscle mass, promoted muscle formation, and modulated the ratio of fiber types in skeletal muscle in vivo. These findings shed light on the diverse biological functions of betaine and indicate that betaine supplementation may lead to new therapies for diseases such as muscular dystrophy or other diseases related to muscle dysfunction. KEY MESSAGES: Betaine supplementation inhibits proliferation and promotes differentiation of C2C12 myoblasts. Betaine supplementation regulates fast to slow muscle fiber-type conversion and is associated with NFATc1/MyoD. Betaine supplementation enhances skeletal myogenesis in vivo. Betaine supplementation does not impair health of mice.


Asunto(s)
Betaína/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteína MioD/metabolismo , Factores de Transcripción NFATC/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Metilación de ADN , Suplementos Dietéticos , Femenino , Inmunohistoquímica , Ratones , Modelos Biológicos , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo
7.
Nutrients ; 10(2)2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29373534

RESUMEN

Obesity is a major driver of metabolic diseases such as nonalcoholic fatty liver disease, certain cancers, and insulin resistance. However, there are no effective drugs to treat obesity. Betaine is a nontoxic, chemically stable and naturally occurring molecule. This study shows that dietary betaine supplementation significantly inhibits the white fat production in a high-fat diet (HFD)-induced obese mice. This might be due to betaine preventing the formation of new white fat (WAT), and guiding the original WAT to burn through stimulated mitochondrial biogenesis and promoting browning of WAT. Furthermore, dietary betaine supplementation decreases intramyocellular lipid accumulation in HFD-induced obese mice. Further analysis shows that betaine supplementation reduced intramyocellular lipid accumulation might be associated with increasing polyunsaturated fatty acids (PUFA), fatty acid oxidation, and the inhibition of fatty acid synthesis in muscle. Notably, by performing insulin-tolerance tests (ITTs) and glucose-tolerance tests (GTTs), dietary betaine supplementation could be observed for improvement of obesity and non-obesity induced insulin resistance. Together, these findings could suggest that inhibiting WAT production, intramyocellular lipid accumulation and inflammation, betaine supplementation limits HFD-induced obesity and improves insulin resistance.


Asunto(s)
Adiposidad , Fármacos Antiobesidad/uso terapéutico , Betaína/uso terapéutico , Suplementos Dietéticos , Resistencia a la Insulina , Metabolismo de los Lípidos , Obesidad/dietoterapia , Células 3T3-L1 , Adipocitos Blancos/citología , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Adipogénesis , Animales , Animales no Consanguíneos , Betaína/efectos adversos , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Dieta Alta en Grasa/efectos adversos , Femenino , Hiperglucemia/prevención & control , Hipoglucemiantes/uso terapéutico , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Aumento de Peso
8.
PLoS One ; 7(8): e43691, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22937080

RESUMEN

Breast milk is the primary source of nutrition for newborns, and is rich in immunological components. MicroRNAs (miRNAs) are present in various body fluids and are selectively packaged inside the exosomes, a type of membrane vesicles, secreted by most cell types. These exosomal miRNAs could be actively delivered into recipient cells, and could regulate target gene expression and recipient cell function. Here, we analyzed the lactation-related miRNA expression profiles in porcine milk exosomes across the entire lactation period (newborn to 28 days after birth) by a deep sequencing. We found that immune-related miRNAs are present and enriched in breast milk exosomes (p<10(-16), χ(2) test) and are generally resistant to relatively harsh conditions. Notably, these exosomal miRNAs are present in higher numbers in the colostrums than in mature milk. It was higher in the serum of colostrum-only fed piglets compared with the mature milk-only fed piglets. These immune-related miRNA-loaded exosomes in breast milk may be transferred into the infant body via the digestive tract. These observations are a prelude to in-depth investigations of the essential roles of breast milk in the development of the infant's immune system.


Asunto(s)
Exosomas/genética , Lactancia/genética , MicroARNs/genética , Leche/metabolismo , Porcinos/genética , Animales , Calostro/metabolismo , Exosomas/metabolismo , Femenino , Perfilación de la Expresión Génica , Lactancia/metabolismo , MicroARNs/metabolismo , Porcinos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA