Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 261: 113165, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32730875

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lycium barbarum polysaccharide (LBP) extracted from the Lycium barbarum L. has been widely used to improve diabetes and its relative complications. However, the mechanisms have not fully understood. A recent study has demonstrated that LBP upregulates suituin 1 (SIRT1). OBJECTIVE: This study was to define the role of Sirt1 and its downstream signaling pathways in diabetic cataract using in vitro and in vivo models. MATERIALS AND METHODS: Human lens epithelial cell line SRA01/04 cells were cultured under high glucose (HG) medium with treatment of LBP or vehicle. Cell viability, apoptosis, protein and/or mRNA levels of Sirt1, BAX, Bcl-2, active-caspase-3, FOXO1, p27 and acetylated p53 were measured. SIRT1 upregulated- and knocked-down cells were generated and tested in high glucose culture. Diabetes mellitus was induced in rats by streptozotocin injection. Body weight, blood glucose levels, lens transparency and retinal function were assessed and SIRT1, as well as the aforementioned biomarkers were measured using Western blotting and qPCR in the animal lens samples. RESULTS: The results showed that HG decreased cell viability and LBP prevented the decrease. The reduced viability in HG cultured SRA01/04 cells was associated with increased levels of BAX, active caspase 3, FOXO1, p27, and p53 and decreased levels of SIRT1 and Bcl-2. Further experiments using sirt1 gene modulated cells showed that upregulation of Sirt1 improved viability, increase cell division as reflected by an increased proportion of S phase in the cell cycle, reduced the number of apoptotic cell death and suppressed p53 acetylation and caspase 3 activation. Opposite results were observed in SIRT1 knock-down cells. Treating diabetic animals with LBP reduced body weight loss and blood glucose content in diabetic animals. Similarly, LBP hindered the development of cataract in lenses and improved retinal function. The beneficial effect of LBP on diabetic cataract was associated with the supression of p53, caspase 3, FOXO1, BAX, p27 and elevation of SIRT1 and Bcl-2, which were consistent with the in vitro findings. CONCLUSION: Our findings showed that diabetes caused cataract is associated with suppression of SIRT1 and Bcl-2 and activation of other cell death related genes. LBP prevented diabetic cataract in animals by upregulating Sirt1 and Bcl-2 and suppressing cell death related genes.


Asunto(s)
Catarata/prevención & control , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Células Epiteliales/efectos de los fármacos , Cristalino/efectos de los fármacos , Lycium , Sirtuina 1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Catarata/enzimología , Catarata/etiología , Catarata/patología , Línea Celular , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Medicamentos Herbarios Chinos/aislamiento & purificación , Células Epiteliales/enzimología , Células Epiteliales/patología , Humanos , Cristalino/enzimología , Cristalino/patología , Lycium/química , Masculino , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-30581486

RESUMEN

Diabetic retinopathy (DR) has become the most frequent cause of impaired visual acuity and blindness in working-age population in developed countries. Here we use diabetic rats to clarify the role of Lycium barbarum polysaccharides (LBP) on DR. We treated diabetic rats with LBP (400 mg/kg/d or 200 mg/kg/d) orally for 20 weeks. Electroretinogram (ERGs) and Laser Doppler blood flow were measured to assess the retinal function, routine histology and ultrastructural studies were performed to evaluate the morphological alterations, and immunohistochemistry, western blotting, and RT-PCR were conducted to detect the protein and mRNA levels of pro- and antiangiogenic factors. The results showed that diabetes suppressed the amplitudes of a-wave, b-wave, and oscillatory potential in ERG, reduced retinal blood flow, decreased the thickness of the retina, and increased the thickness of basement membrane of the retinal capillary. Furthermore, diabetes increased the mRNA and protein expressions of proangiogenic GFAP and VEGF and suppressed the levels of antiangiogenic PEDG. Treatment with LBP either completely or partially reversed the alterations caused by diabetes. It is concluded that the LBP protects retinal function and morphology in diabetic rats, probably through reinstallation of the balance between proangiogenic and antiangiogenic factors, which reduces neovascularization. LBP could be used as a therapeutic drug for DR.

3.
BMC Neurosci ; 18(1): 15, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28103798

RESUMEN

BACKGROUND: Previous studies have indicated that selenium supplementation may be beneficial in neuroprotection against glutamate-induced cell damage, in which mitochondrial dysfunction is considered a major pathogenic feature. However, the exact mechanisms by which selenium protects against glutamate-provoked mitochondrial perturbation remain ambiguous. In this study glutamate exposed murine hippocampal neuronal HT22 cell was used as a model to investigate the underlying mechanisms of selenium-dependent protection against mitochondria damage. RESULTS: We find that glutamate-induced cytotoxicity was associated with enhancement of superoxide production, activation of caspase-9 and -3, increases of mitochondrial fission marker and mitochondrial morphological changes. Selenium significantly resolved the glutamate-induced mitochondria structural damage, alleviated oxidative stress, decreased Apaf-1, caspases-9 and -3 contents, and altered the autophagy process as observed by a decline in the ratio of the autophagy markers LC3-I and LC3-II. CONCLUSION: These findings suggest that the protection of selenium against glutamate stimulated cell damage of HT22 cells is associated with amelioration of mitochondrial dynamic imbalance.


Asunto(s)
Ácido Glutámico/toxicidad , Hipocampo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Selenio/farmacología , Animales , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Autofagia/efectos de los fármacos , Autofagia/fisiología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Evaluación Preclínica de Medicamentos , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Superóxidos/metabolismo
4.
Int J Biol Sci ; 12(6): 688-700, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27194946

RESUMEN

Mitochondrial dysfunction and oxidative stress are the major events that lead to the formation of mitochondrial permeability transition pore (mPTP) during glutamate-induced cytotoxicity and cell death. Coenzyme Q10 (CoQ10) has widely been used for the treatment of mitochondrial disorders and neurodegenerative diseases. Comparing to traditional lipid-soluble CoQ10, water soluble CoQ10 (Ubisol-Q10) has high intracellular and intra-mitochondrial distribution. The aims of the present study are to determine the neuroprotective effects of Ubisol-Q10 on glutamate-induced cell death and to explore its functional mechanisms. HT22 neuronal cells were exposed to glutamate. Cell viability was measured and mitochondrial fragmentation was assessed by mitochondrial imaging. The mPTP opening was determined by mitochondrial membrane potential and calcium retention capacity. The results revealed that the anti-glutamate toxicity effects of Ubisol-Q10 was associated with its ability to block mitochondrial fragmentation, to maintain calcium retention capacity and mitochondrial membrane potential, and to prevent mPTP formation, AIF release, and DNA fragmentation. We concluded that Ubisol-Q10 protects cells from glutamate toxicity by preserving the integrity of mitochondrial structure and function. Therefore, adequate CoQ10 supplementation may be beneficial in preventing cerebral stroke and other disorders that involve mitochondrial dysfunction.


Asunto(s)
Muerte Celular/efectos de los fármacos , Ácido Glutámico/toxicidad , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos
5.
PLoS One ; 7(10): e47910, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23110128

RESUMEN

Supplementation of selenium has been shown to protect cells against free radical mediated cell damage. The objectives of this study are to examine whether supplementation of selenium stimulates mitochondrial biogenesis signaling pathways and whether selenium enhances mitochondrial functional performance. Murine hippocampal neuronal HT22 cells were treated with sodium selenite for 24 hours. Mitochondrial biogenesis markers, mitochondrial respiratory rate and activities of mitochondrial electron transport chain complexes were measured and compared to non-treated cells. The results revealed that treatment of selenium to the HT22 cells elevated the levels of nuclear mitochondrial biogenesis regulators PGC-1α and NRF1, as well as mitochondrial proteins cytochrome c and cytochrome c oxidase IV (COX IV). These effects are associated with phosphorylation of Akt and cAMP response element-binding (CREB). Supplementation of selenium significantly increased mitochondrial respiration and improved the activities of mitochondrial respiratory complexes. We conclude that selenium activates mitochondrial biogenesis signaling pathway and improves mitochondrial function. These effects may be associated with modulation of AKT-CREB pathway.


Asunto(s)
Hipocampo/citología , Mitocondrias/efectos de los fármacos , Recambio Mitocondrial/efectos de los fármacos , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Selenito de Sodio/farmacología , Animales , Línea Celular , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Ratones , Mitocondrias/fisiología , Recambio Mitocondrial/fisiología , Neuronas/fisiología , Factor Nuclear 1 de Respiración/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal/fisiología , Transactivadores/metabolismo , Factores de Transcripción
6.
BMC Neurosci ; 13: 79, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22776356

RESUMEN

BACKGROUND: Mitochondrial dysfunction is one of the major events responsible for activation of neuronal cell death pathways during cerebral ischemia. Trace element selenium has been shown to protect neurons in various diseases conditions. Present study is conducted to demonstrate that selenium preserves mitochondrial functional performance, activates mitochondrial biogenesis and prevents hypoxic/ischemic cell damage. RESULTS: The study conducted on HT22 cells exposed to glutamate or hypoxia and mice subjected to 60-min focal cerebral ischemia revealed that selenium (100 nM) pretreatment (24 h) significantly attenuated cell death induced by either glutamate toxicity or hypoxia. The protective effects were associated with reduction of glutamate and hypoxia-induced ROS production and alleviation of hypoxia-induced suppression of mitochondrial respiratory complex activities. The animal studies demonstrated that selenite pretreatment (0.2 mg/kg i.p. once a day for 7 days) ameliorated cerebral infarct volume and reduced DNA oxidation. Furthermore, selenite increased protein levels of peroxisome proliferator-activated receptor-γ coactivator 1alpha (PGC-1α) and nuclear respiratory factor 1 (NRF1), two key nuclear factors that regulate mitochondrial biogenesis. Finally, selenite normalized the ischemia-induced activation of Beclin 1 and microtubule-associated protein 1 light chain 3-II (LC3-II), markers for autophagy. CONCLUSIONS: These results suggest that selenium protects neurons against hypoxic/ischemic damage by reducing oxidative stress, restoring mitochondrial functional activities and stimulating mitochondrial biogenesis.


Asunto(s)
Antioxidantes/uso terapéutico , Infarto Encefálico/prevención & control , Mitocondrias/efectos de los fármacos , Recambio Mitocondrial/efectos de los fármacos , Selenio/uso terapéutico , Análisis de Varianza , Animales , Antioxidantes/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Beclina-1 , Infarto Encefálico/etiología , Isquemia Encefálica/complicaciones , Muerte Celular/efectos de los fármacos , Línea Celular Transformada , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Fluoresceínas , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/toxicidad , Histonas/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteínas de Microtúbulos/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Compuestos Orgánicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies Reactivas de Oxígeno/metabolismo , Selenio/farmacología , Factores de Tiempo , Transactivadores/metabolismo , Factores de Transcripción
7.
PLoS One ; 7(6): e39382, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22724008

RESUMEN

Glutamate-induced cytotoxicity is partially mediated by enhanced oxidative stress. The objectives of the present study are to determine the effects of glutamate on mitochondrial membrane potential, oxygen consumption, mitochondrial dynamics and autophagy regulating factors and to explore the protective effects of selenium against glutamate cytotoxicity in murine neuronal HT22 cells. Our results demonstrated that glutamate resulted in cell death in a dose-dependent manner and supplementation of 100 nM sodium selenite prevented the detrimental effects of glutamate on cell survival. The glutamate induced cytotoxicity was associated with mitochondrial hyperpolarization, increased ROS production and enhanced oxygen consumption. Selenium reversed these alterations. Furthermore, glutamate increased the levels of mitochondrial fission protein markers pDrp1 and Fis1 and caused increase in mitochondrial fragmentation. Selenium corrected the glutamate-caused mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria. Finally, glutamate activated autophagy markers Beclin 1 and LC3-II, while selenium prevented the activation. These results suggest that glutamate targets the mitochondria and selenium supplementation within physiological concentration is capable of preventing the detrimental effects of glutamate on the mitochondria. Therefore, adequate selenium supplementation may be an efficient strategy to prevent the detrimental glutamate toxicity and further studies are warranted to define the therapeutic potentials of selenium in animal disease models and in human.


Asunto(s)
Autofagia/efectos de los fármacos , Ácido Glutámico/toxicidad , Dinámicas Mitocondriales/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Selenio/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Línea Celular , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA