Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3890-3903, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37475081

RESUMEN

This study aimed to explore the intervention effect of Chuanxiong-Chishao herb pair(CX-CS) on a myocardial infarction-atherosclerosis(MI-AS) mouse model and investigate its effect on the expression profile of circular RNAs(circRNAs)/long non-coding RNAs(lncRNAs) in ischemic myocardium and aorta. Sixty male ApoE~(-/-) mice were randomly assigned to a model group, high-, medium-, and low-dose CX-CS groups(7.8, 3.9, and 1.95 g·kg~(-1)), and a positive drug group(metoprolol 26 mg·kg~(-1) and simvastatin 5.2 mg·kg~(-1)), with 12 mice in each group. Male C57BL/6J mice were assigned to the sham group. The mice in the model group and the groups with drug intervention were fed on a high-fat diet for 10 weeks, followed by anterior descending coronary artery ligation. After that, the mice were fed on a high-fat diet for another two weeks to induce the MI-AS model. The mice in the sham group received normal feed, followed by sham surgery without coronary artery ligation. Mice in the groups with drug intervention received CX-CS or positive drug by gavage for four weeks from the 9th week of high-fat feeding, and those in the model group and the sham group received an equal volume of normal saline. Whole transcriptome sequencing was performed on the heart and aorta tissues of the medium-dose CX-CS group, the model group, and the sham group after administration. The results showed that the medium-and high-dose CX-CS groups showed improved cardiac function and reduced myocardial fibrosis area, and the medium-dose CX-CS group showed significantly reduced plaque area. CX-CS treatment could reverse the expression of circRNA_07227 and circRNA_11464 in the aorta of AS model and circRNA expression(such as circRNA_11505) in the heart of the MI model. Differentially expressed circRNAs between the CX-CS-treated mice and the model mice were mainly enriched in lipid synthesis, lipid metabolism, lipid transport, inflammation, and angiogenesis in the aorta, and in angiogenesis, blood pressure regulation, and other processes in the heart. CX-CS treatment could reverse the expression of lncRNAs such as ENSMUST00000162209 in the aorta of the AS model and TCONS_00002123 in the heart of the MI model. Differentially expressed lncRNAs between the CX-CS-treated mice and model mice were mainly enriched in lipid metabolism, angiogenesis, autophagy, apoptosis, and iron death in the aorta, and in angiogenesis, autophagy, and iron death in the heart. In summary, CX-CS can regulate the expression of a variety of circRNAs and lncRNAs, and its intervention mechanism in coronary heart disease may be related to the regulation of angiogenesis and inflammation in ischemic myocardium, as well as lipid metabolism, lipid transport, inflammation, angiogenesis in AS aorta.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , ARN Largo no Codificante , Animales , Masculino , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Lípidos , Ratones Endogámicos C57BL , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , ARN Circular/genética , ARN Largo no Codificante/genética
2.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5292-5298, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36472036

RESUMEN

This study aims to investigate the effects and the underlying mechanism of Huangqi Shengmai Decoction(HQSMD) in the treatment of fatigue and myocardial injury in a joint rat model. Wistar rats were assigned into 4 groups: sham, model, diltiazem hydrochloride(positive control), and HQSMD. The joint model of fatigue and myocardial injury was established by 14-day exhausted swimming followed by high ligation of the left anterior descending coronary artery. The rats in the sham group underwent a sham operation without coronary artery ligation or swimming. Since the fourth day after the ligation, swimming was continued in the model group and the drug-treated groups for the following 4 weeks. Meanwhile, the rats in the positive control group and the HQSMD group were respectively administrated intragastrically with diltiazem hydrochloride(20 mg·kg~(-1)·d~(-1)) and HQSMD(0.95 g·kg~(-1)·d~(-1)) for 4 weeks, while the shams and the models were given the same volume of normal saline. The left ventricular ejection fraction(LVEF), left ventricular fractional shortening(LVFS), grip strength, and myocardial pathophysiological changes were measured to evaluate the anti-fatigue and cardioprotective effects of HQSMD. The protein levels of PTEN-induced putative kinase 1(PINK1) and parkin in the myocardium were measured by Western blot to preliminarily elucidate the mechanism of HQSMD in ameliorating myocardial injury by suppressing mitochondrial autophagy. Compared with the shams, the models showed weakened heart function(LVEF and LVFS, P<0.01), decreased grasping ability(P<0.05), elevated blood urea nitrogen(BUN) and aldosterone(ALD) levels(P<0.01), aggravated myocardial fibrosis and connective tissue hyperplasia(P<0.01), and up-regulated protein levels of PINK1(P<0.01) and parkin(P<0.05). Four-week treatment with HQSMD increased the LVEF and LVFS levels(P<0.01), enhanced the grip strength(P<0.01), reduced the serum levels of BUN(P<0.01) and ALD(P<0.05), alleviated the pathological injury and fibrosis in the myocardium(P<0.01), and down-regulated the protein levels of PINK1(P<0.01) and parkin(P<0.05) in heart tissue. The results demonstrate that HQSMD may alleviate myocardial fibrosis and protect myocardium by suppressing the excessive mitochondrial auto-phagic activity and reducing the excessively elevated ALD level, thereby ameliorating fatigue and myocardial injury.


Asunto(s)
Cardiomiopatías , Lesiones Cardíacas , Ratas , Animales , Función Ventricular Izquierda , Ratas Sprague-Dawley , Volumen Sistólico , Diltiazem/farmacología , Ratas Wistar , Fibrosis , Proteínas Quinasas , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA