Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1296755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130944

RESUMEN

Chinese plum (Prunus salicina Lindl.) is a nutritionally and economically important stone fruit widely grown around the world. Anthracnose, caused by Collectotrichum spp., is one of the primary biotic stress factors limiting plum production. Medicinal plants may harbor rhizospheric or endophytic microorganisms that produce bioactive metabolites that can be used as anthracnose biocontrol agents. Here, 27 bacterial isolates from the medicinal plant A. conyzoides with diverse antagonistic activities against C. fructicola were screened. Based on morphological, physiological, biochemical, and molecular characterization, 25 of these isolates belong to different species of genus Bacillus, one to Pseudomonas monsensis, and one more to Microbacterium phyllosphaerae. Eight representative strains showed high biocontrol efficacy against plum anthracnose in a pot experiment. In addition, several Bacillus isolates showed a broad spectrum of inhibitory activity against a variety of fungal phytopathogens. Analysis of the volatile organic compound profile of these eight representative strains revealed a total of 47 compounds, most of which were ketones, while the others included alkanes, alkenes, alcohols, pyrazines, and phenols. Overall, this study confirmed the potential value of eight bacterial isolates for development as anthracnose biocontrol agents.

2.
Plant Dis ; 106(12): 3154-3165, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35549326

RESUMEN

Pearl plum (Prunus salicina Lindl.) is mainly cultivated in Tian'e County in Guangxi Province, southern China. Anthracnose is a devastating disease on pearl plum, causing extensive leaf blight. Diseased leaves were sampled from 21 orchards in Tian'e County. Isolates were first screened for ones resembling Colletotrichum, and 21 representative isolates were selected for sequencing of portions of the ribosomal internal transcribed spacer (ITS), the intergenic region of apn2 and MAT1-2-1 genes (ApMAT), actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), calmodulin (CAL), chitin synthase (CHS-1), and ß-tubulin 2 (TUB2). Based on colony, conidial, and appressorial morphology and sequence analyses, the Colletotrichum isolates associated with pearl plum anthracnose were identified as four species: Colletotrichum fructicola (16 isolates), C. gloeosporioides (3 isolates), C. cigarro (1 isolate), and C. siamense (1 isolate). The results of pathogenicity tests showed that isolates of all four species were pathogenic to wounded leaves of pearl plum seedlings. In this study, we microscopically observed the infection processes of isolates of these four species on attached pearl plum leaves. For C. cigarro and C. siamense, the entire infection processes took 120 h; for C. fructicola and C. gloeosporioides, it only took 72 h. This is the first report of C. fructicola and C. cigarro causing anthracnose on pearl plum worldwide, and also the first report of C. siamense causing anthracnose on pearl plum in China.


Asunto(s)
Colletotrichum , Prunus domestica , Enfermedades de las Plantas , ADN de Hongos/genética , Filogenia , China
3.
Plant Dis ; 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33434032

RESUMEN

Alocasia macrorrhiza (L.) Schott, known as Alocasia is found in the Araceae, and is widely planted in southern China for its ornamental and medicinal value. This plant has a wide range of pharmacological effects, and has potential anti-tumor activity (Lei et al. 2013). In July of 2019, leaf spots were observed on A. macrorrhiza in the Xixiangtang Area, Nanning, Guangxi, China. Disease symptoms began with water-soaked yellow-green spots and progressed to form brown, round or oval lesions with yellow halos. Under severe conditions, spots merged into larger irregular lesions. More than 60% of the plants in a 0.5 ha field showed disease symptoms. Symptomatic leaves were collected and cut into small pieces (3×3 mm). Leaf pieces from the margin of the necrotic tissue were surface sterilized in 75% alcohol for 10 s, followed by 2% sodium hypochlorite solution for 2 min, then rinsed three times in sterile distilled water. Tissues were plated on potato dextrose agar (PDA) and incubated at 28°C for 5 days in the dark. Among over 30 isolates, most shared a similar morphology, the isolation rate of these was 86.7% and three of these (GY1-1A, GY1-1B, and GY1-1C) were chosen for single-spore purification and used for fungal morphological characterization and identification. White feathery aerial mycelia with olivaceous gray mycelia below were observed in 7-day cultures. After 14 days, orange conidia were observed. Conidia were hyaline, guttulate, smooth, one-celled, and cylindrical, averaged 13.79 µm × 5.26 µm, 13.89 µm × 5.33 µm and 13.92 µm × 5.42 µm for GY1-1A, GY1-1B and GY1-1C, respectively. Appressoria were mostly irregular in outline, deeply lobed or lightly lobed, gray brown to dark brown, conidial appressoria were 7.93 to 8.74 µm × 5.26 to 5.42 µm, mycelial appressoria were 7.15 to 10.11 µm × 5.60 to 7.44 µm. These morphological characteristics were similar to the C. siamense as previously described (Weir et al. 2012). The partial internal transcribed spacer (ITS) regions, actin (ACT), chitin synthase (CHS-1), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), calmodulin (CAL), ß-tubulin (TUB2), and the intergenic region of apn2 and MAT1-2-1 (ApMAT) were amplified from genomic DNA for the three isolates using primers ITS4/ITS1 (White et al. 1990), ACT-512F/ACT-783R, CHS-79F/CHS-354R, GDF1/GDR1, CL1C/CL2C, Bt2a/Bt2b (Weir et al. 2012), and AM-F/AM-R (Silva et al. 2012) and sequenced. All sequences showed over 99% identity with C. siamense and were deposited in GenBank (ITS, MW040179-MW040181; ACT, MW049220-MW049222; CHS-1, MW049229-MW049231; GAPDH, MW049232-MW049234; CAL, MW049226-MW049228; TUB, MW049235-MW049237; ApMAT, MW049223-MW049225). Maximum Likelihood (ML) phylogenetic tree was constructed with MEGA 5 using the concatenation of multiple sequences (ACT, CHS-1, GAPDH, ITS, TUB2, CAL). According to the phylogenetic tree, all three isolates were found with C. siamense with 95% bootstrap support. To confirm pathogenicity, three sets (three plants per set) of healthy leaves were slightly scratched with autoclaved toothpicks at each of eight locations. Each inoculation location was a cross (2 mm length) and inoculation location was at least 3 cm apart. Ten µl of conidial suspension (106 conidia /ml in 0.1% sterile Tween 20) was applied to the inoculation areas. A control group was mock inoculated with 0.1% sterile Tween 20. Plants were covered with plastic bags to maintain a high humidity environment and placed in a 28°C growth chamber with constant light for 7 days. Inoculated leaves showed yellowish brown spots (0.4 × 0.65 cm), but no symptoms were observed in the control group. The fungus was reisolated from inoculated leaves, and these isolates matched the molecular and morphological characteristics of the original isolates confirming Koch's postulates. Reported hosts of this pathogen include Coffea arabica, Carica papaya, Melilotus indicus and Litchi chinensis (Weir et al. 2012; Qin et al. 2017; Ling et al. 2019) and so on. To our knowledge, this is the first report of C. siamense causing leaf spot on A. macrorrhiza in China. The identification of this pathogen provides a foundation for the management of leaf spot on this medicinal plant.

4.
Acta Biochim Biophys Sin (Shanghai) ; 51(1): 31-40, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544155

RESUMEN

Lotus seed is well known as traditional food and medicine, but its skin is usually discarded. Recent studies have shown that lotus seed skin contains a high concentration of proanthocyanidins that have multi-functions, such as antioxidation, anti-inflammation, and anti-cancer effects. In the present study, we aimed to isolate and purify the proanthocyanidins from lotus seed skin by acetone extraction and rotary evaporation, identify their chemical structures by HPLC-MS-MS and NMR, and further investigate the antioxidant properties of the extract purified by macroporous resin (PMR) from lotus seed skin both in vitro and in vivo. The results showed that PMR mainly contained oligomeric proanthocyanidins, especially dimeric procyanidin B1 (PB1), procyanidin B2 and procyanidin B4. Although it had limited ability to directly scavenge radicals in vitro, PMR could significantly enhance the expressions of antioxidant proteins via activation of nuclear factor-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway in HepG2 cells. Molecular data revealed that PB1, a major component in PMR, stabilized Nrf2 by inhibiting the ubiquitination of Nrf2, which led to subsequent activation of the Nrf2-ARE pathway, including the enhancements of Nrf2 nuclear translocation, Nrf2-ARE binding and ARE transcriptional activity. Moreover, the in vivo results in high fat diet-induced mice further verified the powerful antioxidant property of PMR. These results revealed that lotus seed skin is a promising resource for functional food development.


Asunto(s)
Elementos de Respuesta Antioxidante/genética , Lotus/química , Factor 2 Relacionado con NF-E2/genética , Proantocianidinas/farmacología , Semillas/química , Animales , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA