Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(35): 29314-29324, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30091897

RESUMEN

A smart supramolecular nanosystem integrating targeting, chemotherapy, and photothermal therapy was constructed based on carboxylatopillar[5]arene (CP[5]A)-functionalized CuS nanoparticles (CuS@CP NPs). CuS@CP NPs with good monodispersibility and strong near-infrared absorption were synthesized in aqueous solution through a facile one-pot supramolecular capping method, followed by surface installation of a liver cancer-targeted galactose derivative through host-guest binding interaction. The resulting smart supramolecular nanosystem, namely, CuS@CPG, exhibited excellent photothermal ablation capability to HepG2 cells upon irradiation with laser at 808 nm. Chemotherapeutic drug, doxorubicin hydrochloride (DOX), was further loaded on CuS@CPG via electrostatic interactions between positively charged DOX and negatively charged CP[5]A to give CuS@CPG-DOX with a high drug-loading capacity up to 48.4%. The weakening of DOX-CP[5]A interactions in an acidic environment promoted the pH-responsive drug release from CuS@CPG-DOX. Significantly, this multifunctional supramolecular nanosystem showed a remarkably enhanced therapeutic effect through the combination of targeted chemotherapy and photothermal therapy upon in vitro cell study. Moreover, preliminary in vivo study demonstrated that CuS@CPG and CuS@CPG-DOX had good biocompatibility and excellent tumor inhibition effects upon near-infrared laser irradiation.


Asunto(s)
Cobre/clasificación , Quimioterapia , Nanopartículas/química , Fototerapia , Compuestos de Amonio Cuaternario/química , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Liberación de Fármacos
2.
ACS Appl Mater Interfaces ; 10(15): 12155-12163, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29261277

RESUMEN

A novel multifunctional drug delivery system has been constructed by assembling per-6-thio-ß-cyclodextrin-modified ultrasmall CuS nanoparticles (CD-CuS) onto fluorescent AIEgen-containing mesoporous silica nanoparticles (FMSN). The CD-CuS nanoparticles are anchored on the surface of benzimidazole-grafted FMSN, acting as a gatekeeper and photothermal agent. The prepared blue-emitting nanocomposite (FMSN@CuS) exhibits good biocompatibility and cell imaging capability. Anticancer drug doxorubicin hydrochloride (DOX) molecules are loaded into FMSN@CuS, and zero prerelease at physiological pH (7.4) and on-demand drug release at an acidic environment can be achieved due to the pH-responsive gate-opening of CD-CuS only at an acidic condition. The FMSN@CuS nanocomposite can generate obvious thermal effect after the exposure of 808 nm laser, which can also accelerate the DOX release. Meanwhile, the fluorescence intensity of DOX-loaded FMSN@CuS increases with the release of DOX, and the intracellular drug release process can be tracked according to the change of luminescence intensity. More importantly, DOX-loaded FMSN@CuS displays efficient anticancer effects in vitro upon 808 nm laser irradiation, demonstrating a good synergistic therapeutic effect via combining enhanced chemotherapy and photothermal therapy.


Asunto(s)
Dióxido de Silicio/química , Cobre , Ciclodextrinas , Doxorrubicina , Humanos , Hipertermia Inducida , Nanopartículas , Neoplasias , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA