Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 27(25): 31677-31685, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32500492

RESUMEN

Intracellular phosphorus (P) accumulation can improve microalgal growth and lipid synthesis. However, large excess of P causes cell poisoning. This study utilized a P-fed-batch strategy to investigate its potential to improve the utilization of the excessive P, while avoiding toxic side effects. This strategy contributed to a more complete utilization of the intracellularly stored P, which enhanced the microalgae biomass by 10-15% by upregulating the brassinosteroid growth hormone gene at a P-fed-batch frequency of 2-8. Furthermore, the lipid content increased by 4-16% via upregulation of lipid synthesis-related genes. As a result, the P-fed-batch strategy significantly increased the lipid production by 13-19%. The content of saturated fatty acid increased by ~ 100%, implying improved combustibility and oxidative stability. This is the first study of this P-fed-batch strategy and provides a new concept for the complete utilization of excessive P.


Asunto(s)
Chlorella , Microalgas , Biocombustibles , Biomasa , Procesos Heterotróficos , Lípidos , Fósforo
2.
Bioresour Technol ; 268: 266-270, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30081286

RESUMEN

A high phosphorus concentration is widely accepted as favorable for enhancing both microalgae growth and lipid accumulation; however, excessively high P could be counter-productive. In this study, we investigated the effects of increasing P levels (5.4, 25, 45, 150, and 250 mg-P L-1) on the heterotrophic cultivation of Chlorella regularis. Microalgae growth was inhibited and cells were severely damaged in response to highly excessive P levels (≥150 mg-P L-1). In particular, 250 mg-P L-1 resulted in a ∼40% decrease in cell density and a ∼70% loss of cell viability. Microalgae damage induced by excessive phosphorus included enlarged cell size, deformation of cell walls, and disorganization of organelles. These negative effects were associated with the over-accumulation of polyphosphates within cells, which may further cause binding of P to intracellular components. Although P is an essential nutrient, excessive P lowers cell growth and viability.


Asunto(s)
Chlorella/efectos de los fármacos , Fósforo/toxicidad , Biomasa , Chlorella/crecimiento & desarrollo , Procesos Heterotróficos , Lípidos , Microalgas , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA