Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(5): e2202245, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373209

RESUMEN

Up to now, chemotherapy is still the main strategy for cancer treatment. However, the emergence of chemo-resistance and systemic side effects often seriously affects the treatment and prognosis. Herein, an intelligent nanoplatform based on dendritic mesoporous organosilica nanoparticles (DMON) is constructed. The encapsulated phase-change material, 1-tetradecanol (TD) can serve as a "doorkeeper" and enable the responsive release of drugs based on the temperature changes. Meanwhile, polyethylene glycol (PEG) is used to improve the dispersibility and biocompatibility. Cisplatin is chosen as the model of chemotherapy drug, which is co-loaded with indocyanine green (ICG) in DMON to produce DMON-PEG-cisplatin/ICG-TD (DPCIT). Exciting, the hyperthermia and reactive oxygen species induced by ICG under the NIR-laser irradiation will initiate a phase transition of TD to release cisplatin, thus leading a combined therapy (chemo/photothermal/photodynamic therapy). The results indicated that under laser irradiation, DPCIT can kill cancer cells and inhibit tumor growth efficiently. In addition, the designed nanoplatform reveals minimal systemic toxicity in vivo, in contrast, the distinct liver damage can be observed by the direct treatment of cisplatin. Overall, this research may provide a general approach for the targeted delivery and controlled release of chemotherapy drugs to realize a cooperatively enhanced multimodal tumor therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia/métodos , Cisplatino/farmacología , Polietilenglicoles , Verde de Indocianina/farmacología , Neoplasias/tratamiento farmacológico , Doxorrubicina/farmacología , Línea Celular Tumoral
2.
ACS Appl Mater Interfaces ; 14(32): 36503-36514, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35925873

RESUMEN

Ovarian cancer has become an urgent threat to global female healthcare. Cisplatin, as the traditional chemotherapeutic agent against ovarian cancer, retains several limitations, such as drug resistance and dose-limiting toxicity. In order to solve the above problems and promote the therapeutic effect of chemotherapy, combining chemotherapy and phototherapy has aroused wide interest. In this study, we constructed a versatile cisplatin prodrug-conjugated therapeutic platform based on ultrasmall CuS-modified Fe(III)-metal-organic frameworks (MIL-88) (named M-Pt/PEG-CuS) for tumor-specific enhanced synergistic chemo-/phototherapy. After intravenous injection, M-Pt/PEG-CuS presented obvious accumulation in tumor and Fe(III)-MOFs possessed magnetic resonance imaging (MRI) to guide synergy therapy. Both in vitro and in vivo experimental results showed that M-Pt/PEG-CuS could not only successfully inhibit tumor growth by combining chemotherapy and NIR-II PTT but also avoid the generation of liver damage by the direct treatment of cisplatin(II). Our work presented the development of the nanoplatform as a novel NIR-II photothermal agent, as well as gave a unique combined chemo-photothermal therapy strategy, which might provide new ways of ovarian cancer therapy for clinical translation.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Profármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Doxorrubicina/farmacología , Femenino , Compuestos Férricos , Humanos , Imagen por Resonancia Magnética , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/tratamiento farmacológico , Fototerapia , Terapia Fototérmica , Profármacos/farmacología
3.
Acta Biomater ; 148: 218-229, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35705171

RESUMEN

Triple negative breast cancer (TNBC) is highly malignant and prone to recurrence and metastasis. Patients with TNBC usually have poor prognosis. Hence, it is urgent to develop new comprehensive treatments for TNBC. The combination of heat shock protein (HSP) inhibitor and the photothermal agent can reduce the temperature required to kill tumor cells, thus achieving mild-temperature photothermal therapy (PTT). Compared with traditional PTT, mild-temperature PTT not only decreases tumor thermoresistance introduced by the overexpression of HSP, but also reduces the damage to normal tissues. Meanwhile, Azo initiator 2,2-azobis[2-(2-imidazolin-2-yl) propane]-dihydroch-loride (AIPH) can be thermally decomposed to generate oxygen-independent free radicals. Herein, a new therapeutic multifunctional nanoplatform (M-17AAG-AIPH) by loading heat shock protein 90 (HSP90) inhibitor (17AAG) and AIPH incorporated into mesoporous polydopamine (MPDA) was successfully constructed for mild-temperature PTT combined with oxygen-independent cytotoxic free radicals against TNBC. Under 808 nm laser irradiation, the mild-temperature PTT arising from the combined effects of 17AAG and MPDA induced a rapid release and decomposition of AIPH, promoting the apoptosis of cancer cells in hypoxic microenvironments. Both in vitro and in vivo results showed that the designed nanoplatform can significantly inhibit tumor growth and provided an efficient new therapeutic strategy for TNBC. STATEMENT OF SIGNIFICANCE: There is still an urgent need for new strategies for the treatment of triple negative breast cancer (TNBC). In this work, we successfully constructed a new therapeutic multifunctional nanoplatform (M-17AAG-AIPH) by co-carrying heat shock protein 90 (HSP90) inhibitor (17AAG) and AIPH on mesoporous polydopamine (MPDA). MPDA owned good biocompatibility and outstanding photothermal-conversion ability. The loading of 17AAG can reduce the heat resistance of tumor cells via specifically inhibiting the activity of HSP90, so as to achieve mild-temperature PTT. Meanwhile, 17AAG and MPDA mediated mild-temperature PTT promoted the decomposition of AIPH into oxygen-independent cytotoxic free radicals. Both in vitro and in vivo results showed that M-17AAG-AIPH can significantly inhibit tumor growth and provided an efficient new therapeutic strategy for TNBC.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Nanopartículas , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Radicales Libres , Proteínas de Choque Térmico , Humanos , Hipertermia Inducida/métodos , Nanopartículas/química , Oxígeno , Fototerapia/métodos , Terapia Fototérmica , Temperatura , Neoplasias de la Mama Triple Negativas/terapia , Microambiente Tumoral
4.
J Nanobiotechnology ; 19(1): 261, 2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34481495

RESUMEN

BACKGROUND: Chemodynamic therapy (CDT), employing Fenton or Fenton-like catalysts to convert hydrogen peroxide (H2O2) into toxic hydroxyl radicals (·OH) to kill cancer cells, holds great promise in tumor therapy due to its high selectivity. However, the therapeutic effect is significantly limited by insufficient intracellular H2O2 level in tumor cells. Fortunately, ß-Lapachone (Lapa) that can exert H2O2-supplementing functionality under the catalysis of nicotinamide adenine dinucleotide (phosphate) NAD(P)H: quinone oxidoreductase-1 (NQO1) enzyme offers a new idea to solve this problem. However, extensive DNA damage caused by high levels of reactive oxygen species can trigger the "hyperactivation" of poly(ADP-ribose) polymerase (PARP), which results in the severe interruption of H2O2 supply and further the reduced efficacy of CDT. Herein, we report a self-amplified nanocatalytic system (ZIF67/Ola/Lapa) to co-deliver the PARP inhibitor Olaparib (Ola) and NQO1-bioactivatable drug Lapa for sustainable H2O2 production and augmented CDT ("1 + 1 + 1 > 3"). RESULTS: The effective inhibition of PARP by Ola can synergize Lapa to enhance H2O2 formation due to the continuous NQO1 redox cycling. In turn, the high levels of H2O2 further react with Co2+ to produce the highly toxic ·OH by Fenton-like reaction, dramatically improving CDT. Both in vitro and in vivo studies demonstrate the excellent antitumor activity of ZIF67/Ola/Lapa in NQO1 overexpressed MDA-MB-231 tumor cells. Importantly, the nanocomposite presents minimal systemic toxicity in normal tissues due to the low NQO1 expression. CONCLUSIONS: This design of nanocatalytic system offers a new paradigm for combing PARP inhibitor, NQO1-bioactivatable drug and Fenton-reagents to obtain sustained H2O2 generation for tumor-specific self-amplified CDT.


Asunto(s)
Antineoplásicos/farmacología , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Apoptosis , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , NAD(P)H Deshidrogenasa (Quinona) , Nanopartículas , Naftoquinonas , Poli(ADP-Ribosa) Polimerasa-1 , Especies Reactivas de Oxígeno/metabolismo
5.
Nanoscale ; 12(41): 21234-21247, 2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33063070

RESUMEN

A combination of chemotherapy and phototherapy has been proposed as a promising treatment for esophageal cancer (EC). Irinotecan as a first-line treatment option is widely prescribed for metastatic EC, however, its clinical application is extremely restricted by the low conversion rate to SN38, severe myelosuppression and diarrhea. As a more potent active metabolite of irinotecan, SN38 is a better substitution for irinotecan, but the poor water solubility and the difficulty of encapsulation hindered its medical application. Herein, a multifunctional SN38-conjugated nanosystem (FA-PDA@PZM/SN38@BSA-MnO2, denoted as FA-PPSM) is designed for overcoming the above-mentioned drawbacks and achieving collaborative chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT). The tumor acidic microenvironment induces decomposition of BSA-MnO2 nanoparticles into O2 and Mn2+, thus enhancing oxygen-dependent PDT efficacy; meanwhile, Mn2+ can be employed as a magnetic resonance imaging (MRI) contrast agent. Under 650 and 808 nm laser irradiation, the FA-PPSM nanocomposites exhibit superior antitumor efficacy in Eca-109-tumor bearing mice. Notably, there is low gastrointestinal toxicity and myelosuppression in the FA-PPSM treated mice compared with those treated with irinotecan (alone). Taken together, this work highlights the great potential of the FA-PPSM nanocomposites for MRI-guided chemotherapy in combination with endoscopic light therapy for esophageal cancer.


Asunto(s)
Neoplasias Esofágicas , Nanopartículas , Animales , Línea Celular Tumoral , Diarrea , Neoplasias Esofágicas/tratamiento farmacológico , Irinotecán , Compuestos de Manganeso , Ratones , Óxidos , Fototerapia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA