Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Pharmacol Res ; 196: 106923, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37709183

RESUMEN

Under physiological or pathological conditions, transient receptor potential (TRP) channel vanilloid type 1 (TRPV1) and TRP ankyrin 1 (TRPA1) possess the ability to detect a vast array of stimuli and execute diverse functions. Interestingly, increasing works have reported that activation of TRPV1 and TRPA1 could also be beneficial for ameliorating postoperative ileus (POI). Increasing research has revealed that the gastrointestinal (GI) tract is rich in TRPV1/TRPA1, which can be stimulated by capsaicin, allicin and other compounds. This activation stimulates a variety of neurotransmitters, leading to increased intestinal motility and providing protective effects against GI injury. POI is the most common emergent complication following abdominal and pelvic surgery, and is characterized by postoperative bowel dysfunction, pain, and inflammatory responses. It is noteworthy that natural herbs are gradually gaining recognition as a potential therapeutic option for POI due to the lack of effective pharmacological interventions. Therefore, the focus of this paper is on the TRPV1/TRPA1 channel, and an analysis and summary of the processes and mechanism by which natural herbs activate TRPV1/TRPA1 to enhance GI motility and relieve pain are provided, which will lay the foundation for the development of natural herb treatments for this disease.


Asunto(s)
Ileus , Plantas Medicinales , Humanos , Canal Catiónico TRPA1 , Ileus/tratamiento farmacológico , Dolor , Extractos Vegetales , Canales Catiónicos TRPV/fisiología
2.
Front Pharmacol ; 14: 1141180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909175

RESUMEN

As the common pathological basis of various cardiovascular diseases, the morbidity and mortality of atherosclerosis (AS) have increased in recent years. Unfortunately, there are still many problems in the treatment of AS, and the prevention and treatment of the disease is not ideal. Up to now, the occurrence and development of AS can roughly include endothelial cell dysfunction, vascular smooth muscle cell proliferation, inflammation, foam cell production, and neoangiogenesis. Among them, endothelial dysfunction, as an early event of AS, plays a particularly important role in promoting the development of AS. In addition, oxidative stress occurs throughout the causes of endothelial dysfunction. Some previous studies have shown that flavonoids derived from herbal medicines are typical secondary metabolites. Due to its structural presence of multiple active hydroxyl groups, it is able to exert antioxidant activity in diseases. Therefore, in this review, we will search PubMed, Web of Science, Elesvier, Wliey, Springer for relevant literature, focusing on flavonoids extracted from herbal medicines, and summarizing how they can prevent endothelial dysfunction by inhibiting oxidative stress. Meanwhile, in our study, we found that flavonoid represented by quercetin and naringenin showed superior protective effects both in vivo and in vitro, suggesting the potential of flavonoid compounds in the treatment of AS.

3.
Front Pharmacol ; 13: 1089558, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582530

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia. The fruits of Zanthoxylum bungeanum Maxim. is a common spice and herbal medicine in China, and hydroxy-α-sanshool (HAS) is the most abundant amide in Z. bungeanum and reported to have significant hypoglycemic effects. The purpose of this study was to evaluate the ameliorative effects of HAS on T2DM and the potential mechanisms responsible for those effects. An acute toxicity test revealed the median lethal dose (LD50) of HAS is 73 mg/kg. C57BL/6 J mice were fed a high-fat diet and given an intraperitoneal injection of streptozotocin (STZ) to induce T2DM in mice to evaluate the hypoglycemic effects of HAS. The results showed that HAS significantly reduced fasting blood glucose, reduced pathological changes in the liver and pancreas, and increased liver glycogen content. In addition, glucosamine (GlcN)-induced HepG2 cells were used to establish an insulin resistance cell model and explore the molecular mechanisms of HAS activity. The results demonstrated that HAS significantly increases glucose uptake and glycogen synthesis in HepG2 cells and activates the PI3K/Akt pathway in GlcN-induced cells, as well as increases GSK-3ß phosphorylation, suppresses phosphorylation of glycogen synthase (GS) and increases glycogen synthesis in liver cells. Furthermore, these effects of HAS were blocked by the PI3K inhibitor LY294002. The results of our study suggest that HAS reduces hepatic insulin resistance and increases hepatic glycogen synthesis by activating the PI3K/Akt/GSK-3ß/GS signaling pathway.

4.
Front Immunol ; 13: 1046810, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439173

RESUMEN

As a type of metalloproteinase, matrix metalloproteinases (MMPs) can be divided into collagenase, gelatinase, stromelysins, membrane-type (MT)-MMPs and heterogeneous subgroups according to their structure and function. MMP contents in the human body are strictly regulated, and their synthesis, activation and inhibition processes should be kept in a certain balance; otherwise, this would result in the occurrence of various diseases. Rheumatoid arthritis (RA) is a known immune-mediated systemic inflammatory disease that is affected by a variety of endogenous and exogenous factors. In RA development, MMPs act as important mediators of inflammation and participate in the degradation of extracellular matrix substrates and digestion of fibrillar collagens, leading to the destruction of joint structures. Interestingly, increasing evidence has suggested that herbal medicines have many advantages in RA due to their multitarget properties. In this paper, literature was obtained through electronic databases, including the Web of Science, PubMed, Google Scholar, Springer, and CNKI (Chinese). After classification and analysis, herbal medicines were found to inhibit the inflammatory process of RA by regulating MMPs and protecting joint structures. However, further preclinical and clinical studies are needed to support this view before these herbal medicines can be developed into drugs with actual application to the disease.


Asunto(s)
Artritis Reumatoide , Humanos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Inflamación , Matriz Extracelular/metabolismo
5.
Front Pharmacol ; 13: 937289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210852

RESUMEN

Neurodegenerative disease is a progressive neurodegeneration caused by genetic and environmental factors. Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are the three most common neurodegenerative diseases clinically. Unfortunately, the incidence of neurodegenerative diseases is increasing year by year. However, the current available drugs have poor efficacy and large side effects, which brings a great burden to the patients and the society. Increasing evidence suggests that occurrence and development of the neurodegenerative diseases is closely related to the mitochondrial dysfunction, which can affect mitochondrial biogenesis, mitochondrial dynamics, as well as mitochondrial mitophagy. Through the disruption of mitochondrial homeostasis, nerve cells undergo varying degrees of apoptosis. Interestingly, it has been shown in recent years that the natural agents derived from herbal medicines are beneficial for prevention/treatment of neurodegenerative diseases via regulation of mitochondrial dysfunction. Therefore, in this review, we will focus on the potential therapeutic agents from herbal medicines for treating neurodegenerative diseases via suppressing apoptosis through regulation of mitochondrial dysfunction, in order to provide a foundation for the development of more candidate drugs for neurodegenerative diseases from herbal medicine.

6.
J Integr Med ; 20(6): 543-560, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35965234

RESUMEN

OBJECTIVE: This study investigated the potential mechanisms behind the beneficial effects of Fructus Zanthoxyli (FZ) against type 2 diabetes mellitus (T2DM) based on network pharmacology and experimental validation. METHODS: Ultra-high-performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry, and gas chromatography-mass spectrometry were used to identify the constituents of FZ. Next, the differentially expressed genes linked to the treatment of diabetes with FZ were screened using online databases (including Gene Expression Omnibus database and Swiss Target Prediction online database), and the overlapping genes and their enrichment were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the pathway was verified by in vitro experiments, and cell staining with oil red and Nile red showed that the extract of FZ had a therapeutic effect on T2DM. RESULTS: A total of 43 components were identified from FZ, and 39 differentially expressed overlapping genes were screened as the possible targets of FZ in T2DM. The dug component-target network indicated that PPARA, PPARG, PIK3R3, JAK2 and GPR88 might be the core genes targeted by FZ in the treatment of T2DM. Interestingly, the enrichment analysis of KEGG showed that effects of FZ against T2DM were closely correlated with the adenosine monophosphate-activated protein kinase (AMPK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. In vitro experiments further confirmed that FZ significantly inhibited palmitic acid-induced lipid formation in HepG2 cells. Moreover, FZ treatment was able to promote the AMPK and PI3K/Akt expressions in HepG2 cells. CONCLUSION: Network pharmacology combined with experimental validation revealed that FZ extract can improve the glycolipid metabolism disorder of T2DM via activation of the AMPK/PI3K/Akt pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Glucolípidos/uso terapéutico , Farmacología en Red , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico
7.
Front Biosci (Landmark Ed) ; 26(9): 572-589, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34590468

RESUMEN

Introduction: The ambiguity of the drug target is one of the major factors restricting the development of traditional Chinese medicine (TCMs) and its bioactive constituents. The characteristics of "multiple components, multiple targets and multiple pathways" of TCMs make the research of drug targets extremely difficult. With the emergence of new theories, there are increasing technologies and strategies that can be used for the drug targets research of TCMs. In this paper, we summarize several techniques and methods applied to the study of TCM targets. Methods: Through consulting a large number of literature, research and summary, and finally summarized the application direction of the technical method, advantages and limitations. Results: The methods and techniques including computer aided drug design, network pharmacology, phage display, affinity fishing, drug affinity responsive target stability and cellular thermal shift assay were summarized, and their application directions, advantages and disadvantages were discussed. At the same time, a large number of application examples were given to provide reference for the research of TCM targets.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Farmacología en Red
8.
Oxid Med Cell Longev ; 2021: 5598818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336105

RESUMEN

Cicadae Periostracum (CPM), a commonly used animal traditional Chinese medicine (TCM), possesses antifebrile, spasmolytic, antiasthmatic, and antiphlogistic effects. In our present paper, we aimed to systemically investigate the antiepileptic effects of CPM in epileptic mice and explore the related molecular mechanism. Pentylenetetrazole- (PTZ) and strychnine-induced convulsion mice were established, and the results showed CPM could prolong the latency of convulsion and death and improve the neuronal damage in the hippocampus of PTZ-induced mice. Furthermore, the H2O2-treated PC12 cells were prepared to explore the possible mechanisms for the antiepileptic effects of CPM. CCK-8 results showed that CPM significantly improved the cell viability of H2O2-treated PC12 cells. Results of the acridine orange- (AO-) ethidium bromide (EB) staining, cell mitochondrial membrane potential (MOMP) analysis, and flow cytometry analysis showed that CPM significantly suppressed the H2O2-induced apoptosis in PC12 cells. In addition, CPM also downregulated the proapoptosis proteins, including Bax, cleaved- (C-) caspase-3, and C-caspase-9, and upregulated Bcl-2. Furthermore, CPM reduced the reactive oxygen species (ROS) levels via increasing antioxidative enzyme activities, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Importantly, CPM could increase the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in H2O2-induced PC12 cells and can promote the nuclear transfer of the nuclear factor E2-related factor 2 (Nrf2) and increase the expression of heme oxygenase-1 (HO-1) in the cytoplasm. In conclusion, our present study suggested CPM possessed antiepileptic effects through antiapoptosis of neuron cells via regulation of the PI3K/Akt/Nrf2 signaling pathway.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Apoptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Células PC12/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Anticonvulsivantes/farmacología , Hemípteros , Insectos , Ratones , Ratas , Transducción de Señal
9.
Artículo en Inglés | MEDLINE | ID: mdl-34093720

RESUMEN

OBJECTIVE: Tripterygium wilfordii polyglycosides tablet (TGt) is an oral preparation extracted from plant Tripterygium wilfordii. It has the effects of anti-inflammation and inhibition of cellular and humoral immunity. However, many reports of adverse reactions caused by TGt have limited its application. In this paper, the clinical efficacy and safety of TGt in the treatment of chronic kidney disease (CKD) were verified by data mining and analysis, so as to provide theoretical data support for the application and development of TGt. METHODS: A computer search of the following databases was conducted: PubMed, Web of Science, CBM, VIP, Wanfang Data, and CNKI. The search time limit is from the establishment of the database to September 2020. We searched for clinical randomized controlled trials of TGt in the treatment of CKD. The main types of CKD involved are nephrotic syndrome (NS), primary nephrotic syndrome (PNS), refractory nephrotic syndrome (RNS), and IgA nephropathy (IgAN). RevMan 5.2 and Stata 12.0 software were used to evaluate the literature quality and analyze the data. Finally, GRADEpro software was used to evaluate the quality of evidence. RESULTS: According to the inclusion and exclusion criteria, 75 articles with a total of 6418 subjects were included. The results of the meta-analysis showed that TGt could reduce 24-hour urinary protein, increase serum albumin, improve clinical efficacy, and reduce disease recurrence rate in patients (P < 0.05) with CKD compared with adrenocortical hormones or immunosuppressants. TGt could significantly reduce the level of serum creatinine (Scr) in patients with CKD (P < 0.05), but it was not significant in reducing the level of blood urea nitrogen (P > 0.05). In terms of safety evaluation, in patients with CKD, it could significantly reduce the incidence of gastrointestinal adverse reactions and neurogenic dizziness and headache (P < 0.05). However, in terms of adverse reactions such as liver injury, respiratory infection, and leukopenia, TGt was as harmful as corticosteroids or immunosuppressants (P < 0.05). The quality of the evidence was evaluated with GRADEpro software, and the results showed that TGt was strongly recommended for the treatment of CKD. CONCLUSION: TGt has certain efficacy in the treatment of CKD and has fewer side effects in certain types of diseases. The effect of TGt combined with other drugs is better than that of single use. This paper also has some limitations. Due to the limited number of the included studies, with all being from China, there may be methodological differences. Therefore, more high-quality literature data from different countries are needed.

10.
J Integr Med ; 19(3): 191-202, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33509710

RESUMEN

Primary Sjogren's syndrome (pSS) is a chronic autoimmune disease involving exocrine glands. Current studies have found that the occurrence of the disease is closely related to genetic, environmental and neuroendocrine factors, as well as abnormal activation of T and B lymphocytes. The etiology and pathogenesis of pSS is complex, and there is a lack of specific targeted drugs. Traditional Chinese medicines (TCMs) have been comprehensively investigated for their treatment effects on pSS. Through a systematic review of the literature, we summarized the TCMs used to treat pSS, and find that there are four major ways that TCMs are used, including upregulation of aquaporin proteins, suppression of cell apoptosis, suppression of the abnormal activation of B lymphocytes and suppression of the abnormal activation of T lymphocytes (balancing T helper type [Th]1/Th2 & Th17/Treg and suppressing follicular helper T [Tfh] cells). However, there are not enough data about the active constituents, quality control, pharmacokinetics, toxicity and modern preparations of these TCMs; therefore, more investigations are needed. This paper highlights the importance of TCMs for treating pSS and provides guidance for future investigations.


Asunto(s)
Síndrome de Sjögren , Linfocitos B , Humanos , Medicina Tradicional China , Síndrome de Sjögren/tratamiento farmacológico , Linfocitos T Colaboradores-Inductores , Linfocitos T Reguladores
11.
J Integr Med ; 19(2): 89-103, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33349610

RESUMEN

The processing of Chinese herbal medicine is a form of pharmaceutical technology developed over thousands of years, in order to increase efficiency and decrease toxicity of herbs in traditional Chinese medicine (TCM). Herbal processing is essential for safe and effective application of TCM in clinical practice, as it alters the active chemical components and therefore the functions of herbal medicines. Alkaloid-rich herbal medicines in TCM are commonly processed by cleansing, cutting, processing by dry stir-frying, stir-frying with liquid adjuvants, and processing by water decoction. In addition, commonly used adjuvants for processing alkaloid-rich herbal medicines are river sand, wine, vinegar, brine, honey and herbal juice. For alkaloid-rich herbal medicines, the main chemical reactions that occur during processing include hydrolysis, oxidation, replacement, decomposition and condensation. This paper aimed to summarize the processing methods and mechanisms for alkaloid-rich Chinese herbal medicines, and provide much-needed theoretical support and scientific evidence for understanding those mechanisms and effects. Information on processing methods for alkaloid-rich herbal medicines was collected from classic books of herbal medicine, PhD and MSc dissertations, online scientific databases including PubMed, SciFinder, Scopus, Web of Science, Baidu Scholar and Google Scholar. This paper should help to advance our knowledge of the processing mechanisms and aid in the development of processing methods for alkaloid-rich Chinese herbal medicines.


Asunto(s)
Alcaloides , Medicamentos Herbarios Chinos , China , Medicina Tradicional China , Fitoterapia
12.
Drug Des Devel Ther ; 14: 4915-4949, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33235435

RESUMEN

HIF-1α is an important factor regulating oxygen balance in mammals, and its expression is closely related to various physiological and pathological conditions of the body. Because HIF-1α plays an important role in the occurrence and development of cancer and other diseases, it has become an enduring research hotspot. At the same time, natural medicines and traditional Chinese medicine compounds have amazing curative effects in various diseases related to HIF-1 subtype due to their unique pharmacological effects and more effective ingredients. Therefore, in this article, we first outline the structure of HIF-1α and the regulation related to its expression, then introduce various diseases closely related to HIF-1α, and finally focus on the regulation of natural medicines and compound Chinese medicines through various pathways. This will help us understand HIF-1α systematically, and use HIF-1α as a target to discover more natural medicines and traditional Chinese medicines that can treat related diseases.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Neoplasias Hepáticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/metabolismo , Medicina Tradicional China
13.
Artículo en Inglés | MEDLINE | ID: mdl-33062014

RESUMEN

OBJECTIVE: To systematically evaluate the effectiveness of Shenqi Jiangtang granule (SQJT) in the treatment of type 2 diabetes. METHODS: We searched CNKI, Wanfang Data, VIP, and PubMed databases to collect randomized controlled trials (RCT) of Shenqi Jiangtang granules in the treatment of type 2 diabetes. The search time was from January 2014 to the present. Data were extracted, and quality was evaluated. Metadata analysis of the extracted data was carried out using RevMa5.2 software. The final results are expressed in relative risk (RR), mean difference (MD), and 95% CI. RESULTS: This study included a total of 13 studies, 1160 subjects. Meta-analysis results showed that the test group was better than the control group (RR = 1.26, 95% CI 1.18-1.34, P < 0.00001). The fasting blood glucose, postprandial blood glucose, and glycated hemoglobin of the test group were also significantly better than those of the control group. CONCLUSION: Shenqi Jiangtang granules have a certain clinical effect and low adverse reaction rate for the treatment or adjuvant treatment of type 2 diabetes. At present, the drug has been widely used in clinical practice, but a large number of large-sample clinical trials are needed to further verify its specific efficacy and safety.

14.
Pharm Biol ; 58(1): 863-877, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32878533

RESUMEN

CONTEXT: Cinnamomi ramulus, the dry twig of Cinnamomum cassia Presl. (Lauraceae), has been reported to exert several activities such as antitumor, anti-inflammatory, and analgesic effects. OBJECTIVE: This study investigates the effects of an aqueous extract of Cinnamomi ramulus (ACR) on rheumatoid arthritis (RA). MATERIALS AND METHODS: TNF-α-induced RA-derived fibroblast-like synoviocyte MH7A cells were incubated with ACR (0.1-2 mg/mL) for 24 h. The proliferation was tested using CCK-8 and colony formation assays. The migration and invasion abilities were measured using transwell tests and wound healing assays. Apoptosis and cell cycle were examined by flow cytometry. The potential mechanisms were determined by western blotting and quantitative real-time PCR. UPLC-QE-MS/MS was used for chromatographic analysis of ACR and its compounds were identified. Molecular docking strategy was used to screen the potential anti-RA active compounds of ACR. RESULTS: We found that ACR induced apoptosis in MH7A cells at concentrations of 0.4, 0.8, and 1.2 mg/mL. The proliferation of MH7A cells was reduced and the cell cycle was blocked in the G2/M phase at concentrations of 0.2, 0.4, 0.6 mg/mL. Migration and invasion of MH7A cells were reduced through inhibiting the expression of MMP-1, MMP-2, and MMP-3. The molecular docking strategy results showed that 9 compounds in ACR have good affinity with protein crystal, and benzyl cinnamate (10-100 µg/mL) could inhibit cell migration and induce apoptosis. CONCLUSIONS: The anti-RA effect of ACR may be attributed to its anti-proliferative and anti-migration effects on synovial fibroblasts. These data suggest that Cinnamomi ramulus may have therapeutic value for the treatment of RA.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Cinnamomum aromaticum/química , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Artritis Reumatoide/patología , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Humanos , Metaloproteinasas de la Matriz/metabolismo , Simulación del Acoplamiento Molecular , Extractos Vegetales/administración & dosificación , Sinoviocitos/efectos de los fármacos
15.
Oxid Med Cell Longev ; 2020: 3481758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695254

RESUMEN

Zanthoxylum bungeanum pericarp is a commonly used herbal medicine in China with effects of anti-inflammatory and analgesic, improving learning and memory ability, while hydroxy-α-sanshool (HAS) is the most important active ingredient of Z. bungeanum pericarps. The purpose of this study was to investigate the neuroprotective effect of HAS and its related possible mechanisms using a H2O2-stimulated PC12 cell model. CCK-8 assay results showed that HAS had a significant protective effect on H2O2-stimulated PC12 cells without obvious cytotoxicity on normal PC12 cells. Flow cytometry and fluorescence microscope (DAPI staining and DCFH-DA staining) indicated that HAS could reduce the H2O2-induced apoptosis in PC12 cells via reduction of intracellular ROS and increase of mitochondrial membrane potential (MMP). Subsequently, results of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) determination suggested that HAS could increase the enzyme activities of SOD, CAT, and GSH-Px whereas it could decrease the MDA contents in H2O2-stimulated PC12 cells. Furthermore, the western blotting assays showed that HAS could upregulate the expressions of p-PI3k, Akt, p-Akt, and Bcl-2, while it could downregulate the expressions of cleaved caspase-3 and Bax in H2O2-stimulated PC12 cells. Collectively, it could be concluded according to our results that HAS possesses protective potentials on H2O2-stimulated PC12 cells through suppression of oxidative stress-induced apoptosis via regulation of PI3K/Akt signal pathway.


Asunto(s)
Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Ácidos Grasos Insaturados/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Alcamidas Poliinsaturadas/uso terapéutico , Bloqueadores de los Canales de Potasio/uso terapéutico , Animales , Humanos , Peróxido de Hidrógeno/metabolismo , Proteína Oncogénica v-akt/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Transducción de Señal , Zanthoxylum
16.
Artículo en Inglés | MEDLINE | ID: mdl-32215041

RESUMEN

OBJECTIVE: Based on in vitro and in vivo experimental studies, the changes of the main components of Polygonum multiflorum and different processed products and their effects on hepatotoxicity were investigated. METHODS: The components of different processed products of Polygonum multiflorum and different processed products and their effects on hepatotoxicity were investigated. RESULTS: With the extension of processing time, the contents of various chemical components in Polygonum multiflorum and different processed products and their effects on hepatotoxicity were investigated. Polygonum multiflorum and different processed products and their effects on hepatotoxicity were investigated. Polygonum multiflorum and different processed products and their effects on hepatotoxicity were investigated. Polygonum multiflorum and different processed products and their effects on hepatotoxicity were investigated. CONCLUSION: The content of the main components in Radix Polygonum multiflorum can be affected by processing time; stilbene glycoside may be the main component leading to liver injury. The degree of liver injury caused by Radix Polygonum multiflorum is negatively correlated with processing time.Polygonum multiflorum and different processed products and their effects on hepatotoxicity were investigated. Polygonum multiflorum and different processed products and their effects on hepatotoxicity were investigated.

17.
Molecules ; 25(3)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012896

RESUMEN

Bombyx Batryticatus (BB) is a known traditional Chinese medicine (TCM) utilized to treat convulsions, epilepsy, cough, asthma, headaches, etc. in China for thousands of years. This study is aimed at investigating optimum extraction of protein-rich extracts from BB (BBPs) using response surface methodology (RSM) and exploring the protective effects of BBPs against nerve growth factor (NGF)-induced PC12 cells injured by glutamate (Glu) and their underlying mechanisms. The results indicated optimum process of extraction was as follows: extraction time 1.00 h, ratio of liquid to the raw material 3.80 mL/g and ultrasonic power 230.0 W. The cell viability of PC12 cells stimulated by Glu was determined by CCK-8 assay. The levels of γ-aminobutyric (GABA), interleukin-1ß (IL-1ß), interleukin-4 (IL-4), tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT) and glucocorticoid receptor alpha (GR) in PC12 cells were assayed by ELISA. Furthermore, the Ca2+ levels in PC12 cells were determined by flow cytometry analysis. Protein and mRNA expressions of GABAA-Rα1, NMDAR1, GAD 65, GAD 67, GAT 1 and GAT 3 in PC12 cells were evaluated by real-time polymerase chain reaction (RT-PCR) and Western blotting assays. Results revealed that BBPs decreased toxic effects due to Glu treatment and decreased Ca2+ levels in PC12 cells. After BBPs treatments, levels of GABA and 5-HT were increased and contents of TNF-α, IL-4 and IL-1ß were decreased in NGF-induced PC12 cells injured by Glu. Moreover, BBPs up-regulated the expressions of GABAA-Rα1, GAD 65 and GAD 67, whereas down-regulated that of NMDAR1 GAT 1 and GAT 3. These findings suggested that BBPs possessed protective effects on NGF-induced PC12 cells injured by Glu via γ-Aminobutyric Acid (GABA) signaling pathways, which demonstrated that BBPs has potential anti-epileptic effect in vitro. These findings may be useful in the development of novel medicine for the treatment of epilepsy.


Asunto(s)
Bombyx/metabolismo , Ácido Glutámico/efectos adversos , Proteínas de Insectos/farmacología , Transducción de Señal/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Proteínas de Insectos/aislamiento & purificación , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Factor de Crecimiento Nervioso/farmacología , Células PC12 , Ratas , Receptores de Glucocorticoides/metabolismo , Serotonina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Pharm Pharmacol ; 72(3): 319-342, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31750548

RESUMEN

OBJECTIVES: Cinnamomi ramulus (called Guizhi in Chinese) is a traditional medicine used to treat gastrointestinal dysfunction, cancer, arthritis, osteoporosis, spleen deficiency, Alzheimer's disease and obesity. This review aimed to provide a systematic summary on the geographical distribution, botany, traditional application, phytochemistry, pharmacology, pharmacokinetics, toxicology and other aspects of Cinnamomi ramulus. KEY FINDING: So far, more than 121 chemical compounds have been isolated from Cinnamomi ramulus, including volatile oil, organic acids, triterpenoid saponins, coumarins, tannins, flavonoids and flavonoid glycosides, steroids and polysaccharides. This paper reviews the pharmacological effects of Cinnamomi ramulus on antibacterial, anti-inflammatory, antiviral, antitumour, antipyretic and analgesic, antidiabetic and antiplatelet aggregation effects. Furthermore, the present review also indicates that Cinnamomi ramulus has the potential to develop into drugs for treating various diseases with high efficacy and low toxicity. SUMMARY: The convictive evidence from modern pharmacology research supports the traditional application of Cinnamomi ramulus. However, further studies on the structure-activity relationship of some of the isolated compounds may improve their biological potency. More toxicological studies will also contribute to the progress of clinical trial studies.


Asunto(s)
Cinnamomum/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Animales , Antiinflamatorios/farmacología , Etnofarmacología , Glicósidos , Humanos , Medicina Tradicional , Aceites Volátiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA